Technical Report @

CMU/SEI-92-TR-12
932 ESC-TR-92-012

D- A258
T —-

Software Engineerin

Issues in Requirements Elicitation

Michael G. Christel
Kyo C. Kang

September 1992

g Institute

Carje Miton Uparsity Ones cob disararnate and Carregie Melon Universdy 15 requirad net 1o discrimnata in a0misson, employmant of administration
GG g rrs A e S Gl L0 COIGE. NANNal orgin, sex of rardcap n viotaton of Tile Vi of he Cril Rights Act of 1984, Tine 1X of the Educational
Arrigedments of 1972 andd Secton S04 of the Renatilitahon Act ot 1973 or other tederal. state of local laws. of erecCulive ordors

I an et Coarrmgnes M
G, Ve
FEROTE B

fon Universly does rot discrminale in admigsion, employmaent or ademisiration of A programa on the bass of religion, creed,
N status. sexual snentanon of in violaton of fedaral, state of local laws. or executve ordars While the faderat government doos
£ians 308 Disessas om racerang ROTC seholarshvns or seneng in the mditary, RCTC clasees on this campus ar¢ avadlabla to

anceslty 6o

BRI

Eialie}

By, res JuPCermng appicaton of esa statements shau ' Le direcled to the Provost, Carnegie Mation Uriversity, 5000 Forbes Avanue, Pittaturgh. Pa.
15018 letepnone (312} JBB-2681 of e Vice President tor Enrciment, Carnegie Melion Urwersity, 5000 Forbes Avenue, Piisburgh, Pa. 15213, telaphone
(312) 2682058

Technical Report
CMU/SEI-92-TR-12
ESC-TR-92-012
September 1992

Issues in Requirements Elicitation

ACC@SiOn FOr D MiChael G- Christel
NTIS CRA&i N Kyo C. Kang
DTIC TAB i1
Uianiouiced o

Justitication e

By H " o .
e metecieesromn e man vetememmnen eemevenod m S E neeri P
Dist. ibution / Requirements Engineering Project

e

Avadanint, Comoz

S~ - e e

pAV2T 2T o

IRV |

A

Dist

DTIC QUALITY [NISPECTED 2
? D Approved for public release.
Distribution un limited.

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESC/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

(Dlas

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright © 1992 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Govemment
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FORA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Setvice. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Copies of this document are also available from Research Access, Inc., 3400 Forbes Avenue, Suite 302, Pittsburgh, PA 15213.
Use of any trademarks in this report is not intended in any way 10 infringe on the rights of the trademark holder.

Table of Contents

1 Introduction 1
1.1 Definitions 2
1.2 Report Outline 3

2 The Process of Requirements Elicitation 5

3 Requirements Elicitation Problems 7
3.1 Problems of Scope 7
3.2 Problems of Understanding 10
3.3 Problems of Volatility 12

4 Current Elicitation Techniques 15
4.1 Information Gathering 16
4.2 Requirements Expression and Analysis 19
4.3 Validation 24

$ An Elicitation Methodology Framework 27
5.1 A Requirements Elicitation Process Model 27
5.2 Methodology over Method 30
5.3 Integration of Techniques 33

5.3.1 Fact-Finding 34
5.3.2 Requirements Gathering 35
5.3.3 Evaluation and Rationalization 36
5.3.4 Prioritization 37
5.3.5 Integration and Validation 37
5.3.6 Methodology Summary 38
5.4 Evaluation Criteria 39

6 Conclusions 43

Appendix A Notes on Selected Elicitation Methods and Techniques 45
A.1 Notes on IBIS 45

A.2 Notes on the Use of Domain Models 47
A.3 Notes on JAD 50
A.4 Notes on CORE 51
A.5 Notes on QFD 52
A.6 Notes on SSM 56
A.7 Other Method-Specific Notes 58
Bibliography 61

CMU/SEI-92-TR-12 i

CMU/SEI-92-TR-12

List of Figures

Figure 3-1 Requirements Engineering as an Iterative Process 14
Figure 5-1 Proposed Requirements Elicitation Process Model 28

CMU/SEI-92-TR-12 iii

CMU/SE!-92-TR-12

List of Tables

Table 4-1: Matching Elicitation Techniques to a Set of Issues 16
Table 5-1: Tasks Comprising the Elicitation Process Model 29

CMU/SEI-92-TR-12 v

CMU/SEI92-TR-12

Issues in Requirements Elicitation

Abstract: There are many problems associated with requirements
engineering, including problems in defining the system scope, problems in
fostering understanding among the different communities affected by the
development of a given system, and problems in dealing with the volatile nature
of requirements. These problems may lead to poor requirements and the
cancellation of system development, or else the development of a system that
is later judged unsatisfactory or unacceptable, has high maintenance costs, or
undergoes frequent changes. By improving requirements elicitation, the
requirements engineering process can be improved, resulting in enhanced
system requirements and potentially a much better system.

Requirements engineering can be decomposed into the activities of
requirements elicitation, specification, and validation. Most of the requirements
techniques and tools today focus on specification, i.e., the representation of the
requirements. This report concentrates instead on elicitation concerns, those
problems with requirements engineering that are not adequately addressed by
specification techniques. An elicitation methodology is proposed to handle
these concerns.

This new elicitation methodology strives to incorporate the advantages of
existing elicitation techniques while comprehensively addressing the activities
performed during requirements elicitation. These activities include fact-finding,
requirements gathering, evaluation and rationalization, prioritization, and
integration. Taken by themselves, existing elicitation techniques are lacking in
one or more of these areas.

1 Introduction

Requirements engineering is a key problem area in the development of complex, software-in-
tensive systems [Brooks 87, p. 17]:

The hardest single part of building a software system is deciding what to build.
...No other part of the work so cripples the resulting system if done wrong. No
other part is more difficult to rectify later.

Issues involved in this problem area include:
e achieving requirements completeness without unnecessarily constraining
system design
¢ analysis and validation difficulty
¢ changing requirements over time

Many requirements errors are passed undetected to the later phases of the life cycle, and cor-
recting these errors during or after implementation has been found to be extremely costly
[Congress 90]. The DoD Software Technology Plan [DoD 91] states that “early defect fixes are

CMU/SEI92-TR-12 3

typically two orders of magnitude cheaper than late defect fixes, and the early requirements
and design defects typically leave more serious operational consequences.” One way to re-
duce requirements errors is by improving requirements elicitation, an activity often overlooked
or only partially addressed by current requirements engineering techniques.

Before proceeding further, a few definitions taken from the literature will help to clarify con-
cepts related to requirements engineering. After the role of elicitation in the requirements en-
gineering process is defined, an outline of the remainder of the report will be presented.

1.1 Definitions

A requirement is a “function or characteristic of a system that is necessary...the quantifiable
and verifiable behaviors that a system must possess and constraints that a system must work
within to satisfy an organization’s objectives and solve a set of problems” [STEP 91]. Similarly,
“requirement” has the following definitions [IEEE 90]:

(1) a condition or capability needed by a user to solve a problem or achieve an
objective; (2) a condition or capability that must be met or possessed by a
system or system component to satisfy a contract, standard, specification, or
other formally imposed documents; (3) a documented representation of a
condition or capability as in (1) or (2).

Requirements do not only consist of functions, a misconception introduced in part because the
currently popular structured analysis techniques focus on articulating functional requirements.
Different authors will present ditferent definitions, but there are clearly nonfunctional require-
ments as well as functional requirements. In one source, requirements are classified as follows
[Southwell 87):
1. functional requirements
2. nonfunctional requirements
a. performance/reliability
b. interfaces
¢. design constraints

Ashworth classifies requirements into five broad categories [Ashworth 89]:

functions (“what”)
data (“what”)

nonfunctional requirements (“how well")

> @0 p =

goals (defined to guide the system developer in achieving the implementation
of the agreed user requirements)

5. implementation/design constraints (e.g., use COBOL)

2 CMU/SEI-92-TR-12

Sage and Palmer classify requirements as technical system requirements, which are primarily
functional requirements, and management system requirements, which include cost and time
constraints as well as quality factors for requirements [Sage 90]. The IEEE Standard Glossary
of Software Engineering Terminology defines five other types of requirements in addition to
functional requirements: performance requirements, interface requirements, design require-
ments, implementation requirements, and physical requirements [IEEE 90].

The varying uses of “specification” contribute to the difficulty in understanding requirements
engineering. For example, Zeroual defines the requirements specification process as two
steps: eliciting the user's requirements, and representing the requirements thus obtained [Ze-
roual 89]. However, other sources use “specification” more traditionally, with requirements
analysis consisting of three interrelated operations: requirements elicitation, specification, and
validation [Kramer 88]. In this paper “specification” shall be used as in this second context to
mean the representation of the requirements, and not the requirements definition activity. This
is consistent with the definition of requirements specification as “a document that specifies the
requirements for a system or component” [[EEE 90]. The requirements definition activity shall
be referred to as “requirements engineering.”

Requirements engineering is “the disciplined application of scientific principles and techniques
for developing, communicating, and managing requirements” [STEP 91]. Similarly, Loucopou-
los and Champion define requirements engineering as “the systematic process of developing
requirements through an iterative process of analysing a problem, documenting the resulting
observations, and checking the accuracy of the understanding gained” [Loucopoulos 89, p.
123]. Leite offers the following process definition for requirements engineering [Leite 87, p. 26):

Requirements analysis is a process in which ‘what is to be done” is elicited
and modeled. This process has to deal with difference viewpoints, and it uses
a combination of methods, tools, and actors. The product of this process is a
model, from which a document, called requirements, is produced.

This component activity of requirements elicitation is the focus of this report.

Requirements elicitation was defined in a recent workshop as “the process of identifying needs
and bridging the disparities among the involved communities for the purpose of defining and
distilling requirements to meet the constraints of these communities” [SEI 91, p. 26)]. Require-
ments elicitation serves as a front end to systems development. Requirements analysts, spon-
sors/funders, developers, and end users are involved with requirements elicitation to differing
degrees, and thus requirements elicitation involves social, communicative issues as well as
technical issues [Zucconi 89], [Zahniser 90].

1.2 Report Outline

Many of the problems in creating and refining a system can be traced back to elicitation issues.
Yet, much of the research conducted on requirements engineering has ignored elicitation,
leading Leite to claim in a 1987 survey on requirements analysis that the state of the art in re-

CMU/SEI-92-TR-12 3

quirements analysis is not much different than it was in the late 1970s. He argues that there
is a concentration of research in this area on precision, representations, modeling techniques,
verification, and proofs as opposed to improving the elicitation of requirements. He concludes
that “research efforts should be directed towards methods and tools needed to improve the
requirements analysis process, and, in particular, to those providing more support to the elic-
itation of requirements” [Leite 87, p. 3].

The requirements elicitation process is discussed further in Section 2. Section 3 then outlines
the problems with requirements engineering in general, followed by an examination of the de-
ficiencies attributable to requirements elicitation. A number of elicitation techniques have been
proposed or put into practice during the past decade, and these techniques are surveyed in
Section 4. This survey reveals that none of these techniques comprehensively address all of
the identified elicitation deficiencies. A methodology is proposed in Section 5 based on these
techniques which better addresses the problems of elicitation.

4 CMU/SEI-92-TR-12

2 The Process of Requirements Elicitation

Rzepka decomposes the requirements engineering process into three activities [Rzepka 89):

1. elicit requirements from various individual sources;
2. insure that the needs of all users are consistent and feasible; and

3. validate that the requirements so derived are an accurate reflection of user
needs.

This model implies a sequential ordering to the activities, with elicitation done once at the very
beginning of the process. In reality, though, the process is iterative, with these activities revis-
ited many times [Southwell 87, p. 195])

...the requirements definition activity cannot be defined by a simple progression
through, or relationship between, acquisition, expression, analysis, and
specification. Requirements evolve at an uneven pace and tend to generate
further requirements from the definition processes.

The construction of the requirements specification is inevitably an iterative
process which is not, in general, self-terminating. Thus, at each iteration it is
necessary to consider whether the current version of the requirements
specification adequately defines the purchaser’s requirement, and, if not, how
it must be changed or expanded further.

Thus, while requirements elicitation consists of the earliest activities in the requirements engi-
neering process, it can not be divorced from the subsequent activities. Elicitation will likely it-
erate with these other activities during requirements development.

Requirements elicitation itself can be broken down into the activities of fact-finding, information
gathering, and integration. For example, Rzepka further decomposes the elicitation process
as follows [Rzepka 89]:

1. Identify the relevant parties which are sources of requirements. The party
might be an end user, an interfacing system, or environmental factors.

2. Gather the “wish list" for each relevant party. This wish list is likely to originally
contain ambiguities, inconsistencies, infeasible requirements, and untestable
requirements, as well as probably being incomplete.

3. Document and refine the “wish list” for each relevant party. The wish list
includes all important activities and data, and during this stage itis repeatedly
analyzed until it is self-consistent. The list is typically high level, specific to the
relevant problem domain, and stated in user-specific terms.

CMU/SEI-92-TR-12 5

4. Integrate the wish lists across the various relevant parties, henceforth called
viewpoints, thereby resolving the conflicts between the viewpoints.
Consistency checking is an important part of this process. The wish lists, or
goals, are also checked for feasibility.

5. Determine the nonfunctional requirements, such as performance and
reliability issues, and state these in the requirements document.

These activities are common to most of the process definitions for requirements elicitation
found in the literature. However, the means of achieving these activities and iterating between

them are still not well understood.

The resulting product from the elicitation phase is a subset of the goals from the various parties
which describe a number of possible solutions. The remainder of the requirements engineer-
ing process concerns the validation of this subset to see if it is what the sponsor/funder and
user actually intended. This validation typically includes the creation of models to foster under-
standing between the parties involved in requirements development. The result of a success-
ful requirements engineering process is a requirements specification, where “the goodness or
badness of a specification can be judged only relative to the user's goals and the resources
available” [Fickas 88, p. 39].

The goal of requirements engineering is the production of a good requirements specification.
The IEEE Guide to Software Requirements Specifications [IEEE 84] defines a good software
requirements specification as being:

e unambiguous

e complete

¢ verifiable

® consistent

¢ modifiable

e tfraceable

¢ usable during operations and maintenance
Recent requirements engineering literature is in agreement on this set of attributes, with the
added property that the requirements should be necessary [Cordes 89], [Schouwen 90]. The

requirements should be prioritized as well, particularly in novel situations where the order in
which the subgoals are addressed significantly impacts the final solution [Holbrook 90].

A good requirements elicitation process supports the development of a specification with
these attributes. Conversely, problems with requirements elicitation inhibit the definition of re-
quirements which are unambiguous, complete, verifiable, consistent, modifiable, traceable,
usable, and necessary. Some of these problems are looked at in the next section. In subse-
quent sections the process sketched out here as “fact-finding, information gathering, and inte-
gration” will be refined to specifically address the problems encountered during requirements
elicitation.

6 CMU/SEI-92-TR-12

3 Requirements Elicitation Problems

Problems of requirements elicitation can be grouped into three categories:

* problems of scope, in which the requirements may address too littie or too
much information;

* problems of understanding, within groups as well as between groups such as
users and developers; and

¢ problems of volatility, i.e., the changing nature of requirements.
The list of ten elicitation problems given in one source [McDermid 89] could be classified ac-
cording to this framework as follows:

® problems of scope
« the boundary of the system is ill-defined
« unnecessary design information may be given
* problems of understanding
« users have incomplete understanding of their needs
« users have poor understanding of computer capabilities and limitations
» analysts have poor knowledge of problem domain
« user and analyst speak different languages
» ease of omitting “obvious” information
« conflicting views of different users

« requirements are often vague and untestable, e.g., “user friendly” and
“robust”

¢ problems of volatility

« requirements evolve over time
The remainder of this section will discuss these three problem areas in further detail.

3.1 Problems of Scope

Elicitation techniques need to be broad enough to establish boundary conditions for the target
system, yet still should focus on the creation of requirements as opposed to design activities.
Avoiding contextual issues can lead to requirements which are incomplete, not verifiable, un-
necessary, and unusable. Focusing on broader design activities improperly emphasizes de-
velopers’ issues over the users’ needs and may result in poor requirements as well.

Requirements elicitation must begin with an organizational and context analysis to determine
the boundary of the target system as well as the objectives of the system. Less ambitious elic-
itation techniques not addressing this concem run the risk of producing requirements which
are incomplete and potentially unusable, because they do not adhere to the user's or organi-

CMU/SEI92-TR-12 7

zation's true goals for the system. Performing an organizational and context analysis allows
these goals to be captured, and then used to verify that the requirements are indeed usable
and correct.

Elicitation techniques can be overly ambitious as well. Elicitation must focus on the creation of
requirements, not design activities, in order to adequately address users' concerns and not
just developers’ needs. Elicitation strategies which produce requirements in the form of high
level designs run the risk of creating requirements which are ambiguous to the user commu-
nity. These requirements may not be verifiable by the users because they cannot adequately
understand the design language. Also, requirements expressed as a design are much more
likely to incorporate additional decisions not reflecting user or sponsor needs, i.e., the require-
ments will not be precise and necessary.

There are at least three broad contexts which affect the requirements and the requirements
engineering process for a proposed system:

® organization

® environment

® project
Requirements elicitation necessitates an understanding of the organization in which the sys-
tem under development will be placed, as well as an understanding of the system'’s mission
within the organizational context: “the primary interest of customers is not in a computer sys-
tem, but rather in some overall positive effects resulting from the introduction of a computer
system in their environment” [Dubois 88, p. 395). This view is not well reflected in current prac-
tice, where requirements elicitation concentrates on the computer system without much con-
cern for organizational factors. Organizational factors include:

¢ submitters of input to the target system
* users of the target system’s output

¢ ways in which the target system will change the organization's means of
doing business
If requirements elicitation begins without an appreciation for organizational context, then a
number of restricting assumptions are made due to “misconceptions, management politics,
technical ignorance, mistrust, established practices, personnel resistance, ..." [Mittermeir 90,
p. 121].

Environmental factors have a strong influence on requirements elicitation [Macaulay 90, p.
107]: “The process for eliciting the work-group and end-user requirements are premised on
the notion that sound and accurate descriptions of the users and their environment is at first
necessary.” Environmental factors include:

* hardware and software constraints imposed on a target system (the target
system will typically be a component of some targer system with an existing
or required architecture already in place)

8 CMU/SEI-92-TR-12

e the maturity of the target system’s domain

e the certainty of the target system's interfaces to the larger system

¢ the target system’s role within a larger system
Environmental constraints are introduced because the system under development is rarely a
stand-alone system but instead must interface with a larger system. This premise allows the
requirements engineer to restrict the requirements analysis to the universe of discourse estab-
lished by this larger system [Leite 87].

Environmental constraints can have a profound impact on the requirements elicitation pro-
cess. The specialization of this process to a particular architecture or domain allows require-
ments elicitation to focus on problems that either have lower priority or do not exiz: in other
application domains [Leite 87, p. 60]: “performing requirements analysis for an application
area may require specific methods and tools that are not necessary for other types of applica-
tion.”

Indeed, specialized methods for the embedded real-time systems domain have been pro-
posed [Lavi 88], [Winokur 90]. Stair and LaMothe suggest that eliciting requirements for a real-
time system will require different approaches than eliciting requirements for a batch transac-
tion processing system [Stair 91].

The project context also affects the requirements and requirements engineering process.
Project factors include:

* the attributes of the different stakeholder communities, such as the end
users, sponsors, developers, and requirements analysts. Examples of such
attributes are:
* management style
« management hierarchy
« domain experience
« computer experience
* the constraints imposed by the people involved in the elicitation process,
e.g., managerial constraints concerning cost, time, and desired quality in the
target system
The understanding of organizational, environmental, and project context thus provides a good
starting point for requirements elicitation. Requirements engineering is supposedly bounded
in the other direction by design activities, where a version of the requirements specification is
first completed and then design for that specification takes place. In reality, though, high level
design and requirements specification are done nearly simultaneously, i.e., you cannot sepa-
rate “the How's from the What's” [Lavi 88]. Colbert notes that “lately, some have argued that
there is no distinction between requirements analysis and design” [Colbert 89, p. 413]. He then
presents an example of a problem requirement for “user-friendly interface” being expressed
as a solution: “mouse-driven window environment.” Colbert also discusses the distinction be-

CMU/SEI-92-TR-12 9

tween requirements and design as being a matter of viewpoint. For example, a missile is a de-
sign to the person wanting a delivery system and a “requirement” to the person who created
the missile.

While it is a noble goal to separate requirements elicitation from design activities, it may be
difficult to achieve in practice. Achieving this separation allows requirements to be created
which are both complete (full coverage of users’ and other stakeholders’ needs) and neces-
sary (only represent information pertinent to solution development). However, typically the ini-
tial requirements are either underspecified, necessary and incomplete; or eilse they are
overspecified, complete but burdened with needless design constraints. Cordes and Carver
discuss this difficulty in producing requirements which are both necessary and complete
[Cordes 89, p. 184]:

A true distinction between the processes involved in necessity testing and
completeness testing requires knowledge about the actual implementation of
the system. Only the knowledge that is present in the final, completed system
product can determine if the inclusion of a piece of information is needed for
specification completeness or if this information is unnecessary to the system's
development.

Thus, elicitation activities which are either too narrow or too broad in scope may result in re-
quirements which are ambiguous, incomplete, not verifiable, unnecessary, and unusable. The
requirements may be unusable because they do not reflect true user needs, or else because
they are not implementable under given environmental or project constraints.

3.2 Problems of Understanding

A Savant Institute study found that “56% of errors in installed systems were due to poor com-
munication between user and analyst in defining requirements and that these types of errors
were the most expensive to correct using up to 82% of available staff time” [Goodrich 90, p.
202]. Problems of understanding during elicitation can lead to requirements which are ambig-
uous, incomplete, inconsistent, and even incorrect because they do not address the require-
ments elicitation stakeholders’ true needs.

Problems of understanding can be separated into three issues:

* The communities involved in elicitation possess a variety of backgrounds and
experience levels, so that which is common knowledge to one group may be
completely foreign to another. This makes it difficult for a requirements
analyst to interpret and integrate information gathered from these diverse
communities.

* The language used to express the requirements back to these stakeholder
communities may be too formal or too informal to meet the needs of each of
the groups, again because of the diversity of the communities.

10 CMU/SEI92-TR-12

» The large amount of information gathered during elicitation necessitates that
it be structured in some way. The understanding of this structure is
dependent on the characteristics of the stakeholder communities.
The stakeholders involved in requirements elicitation come from at least five communities:
customers/sponsors, users, developers, quality assurance teams, and requirements analysts.
The requirements should be expressed in a form which:

e promotes communication and understanding between customers and users;

* allows the developer to determine whether the expressed requirements are
implementable; and
e lets quality assurance teams verify that an implementation meets these
requirements.
The stakeholder communities may be multilevel. The involved parties may be in managerial
positions in a contributing organization, e.g., the manager of the user organization, or they may
be the actual end users within that organization.

The party representing a stakeholder community, e.g., the customer, may be the same party
representing another stakeholder, e.g., the user in a case where the user community is funding
the project directly. Hence the customer, user, developer, tester, and requirements analyst
groups may represent five different entities or be represented by fewer groups which cross dis-
ciplines.

Information gathered from only one group, or only one level, is likely to be biased by the level
of abstraction from which those people conceive the problem, their planning horizon, detailed
acquaintance with the application, personal preconceptions, goals, and responsibilities.
Therefore, “the true picture of the ‘problem to be solved’ can be obtained only from collecting
information from all parties concerned” [Mittermeir 90, p. 121]. This information gathering can
be a difficult task. System developers and requirements analysts may have limited knowledge
of the application domain, while the system users may not know design methods for the de-
velopment of systems with a significant software component. The customer may not under-
stand what can be done to solve a given problem, nor have full appreciation for the difficulty
in getting the analyst and developer to understand the problem in the customer's domain. The
analyst is often ignorant of the customer’s problems, goals, and wishes. Sage and Palmer note
that “any attention to the development of communication skills to alleviate these problem ar-
eas, is of great benefit” for requirements elicitation [Sage 90, p. 99).

Requirements elicitation starts with inherently informal knowledge and typically involves peo-
ple not literate in software-intensive systems. It therefore is plagued with the problem of veri-
fication of information due to the misunderstanding between requirements analysts and
customers [Dubois 88]. To avoid misunderstandings due to terminology differences, require-
ments have traditionally been expressed back to the elicitation communities using natural lan-
guage text. However, this approach introduces other problems, such as ambiguity [Milsom 89,
p. 137): “The use of natural language to express requirements inhibits automated analysis and

CMU/SEI-92-TR-12 11

verification of the requirements. Requirements specified using natural language can be misin-
terpreted.” Requirements therefore may be difficult to understand by the elicitation communi-
ties because of the form used to express the requirements.

Requirements are typically not the product of a single person's work but rather are the resuit
of many people's expressed needs across different communities. These multiple inputs
present problems about redundancy of data, inconsistency, and point of view [Cordes 89, p.
182]. Different groups involved in requirements elicitation have different interpretations of what
the requirements say and different expectations of what a system built to these requirements
will deliver.

Requirements may also be misunderstood because of their large size [Kramer 88, p. 86):

...requirements may be misunderstood because they are so complex that the
client and practitioner have difficulty focusing attention on one aspect at a time
and perceiving interactions between requirements, or because the specified
system is impossible to visualize from the resulting specification.

One reason why requirements elicitation methodologies have not been used frequently in the
past on real world information systems is due to the problem of managing all of the collected
data [Ceri 86]. A huge amount of documentation is typically required by many methodologies,
leading to the observation that “in most cases the documentation is on paper modules, and
thus becomes quickly unmanageable and not up-to-date” [Ceri 86, p. 207).

Problems in understanding result from the necessary involvement of requirements analysts,
sponsors, developers, and end users in requirements elicitation. The requirements are pro-
duced and interpreted by people with different experience levels and backgrounds. The form
in which the requirements are expressed and the size of the system described by the require-
ments also affect understanding. If the participants in elicitation do not adequately understand
the output of the process, then the resulting requirements may be ambiguous, inconsistent,
and incomplete. The requirements may also be incorrect, not addressing the true needs of the
elicitation communities.

Requirements analysis is a social process, and “techniques and methods that fail to recognize
this factor (most of them do faill) have less chance of gathering all the necessary information”
[Leite 87, p. 30). In summary, “good communication among users, customers, and developers
is very important in solving pragmatic system problems, an issue too often overlooked when
system analysis is approached only from a computer-science standpoint” [Deutsch 88, p. 44].

3.3 Problems of Volatility

Requirements change. During the time it takes to develop a system the users’ needs may ma-
ture because of increased knowledge brought on by the development activities, or they may
shift to a new set of needs because of unforeseen organizational or environmental pressures.

12 CMU/SEI-92-TR-12

If such changes are not accommodated, the original requirements set will become incomplete,
inconsistent with the new situation, and potentially unusable because they capture information
that has since become obsolete.

One primary cause of requirements volatility is that “user needs evolve over time” [Sage 90,
p. 8]. The requirements engineering process of elicit, specify, and validate should not be exe-
cuted only once during system development, but rather should be returned to so that the re-
quirements can reflect the new knowledge gained during specification, validation, and
subsequent activities. A requirements engineering methodology should be iterative in nature,
“so that solutions can be reworked in the light of increased knowledge” [Macaulay 90, p. 102).

Another cause of requirements volatility is that the requirements are the product of the contri-
butions of many individuals, and these individuals often have conflicting needs and goals. For
example, there usually is more than one customer, with each customer having different and
often contradictory views and interests [Dubois 88]. Due to political climate and other factors,
the needs of a particular group may be overemphasized in the elicitation of requirements. Lat-
er prioritization of the elicitation communities’ needs may correct this oversight and result in
requirements changes. Both the traceability of requirements and their consistency may be af-
fected if these changes are frequent and not anticipated.

Organizational complexity is another cause of requirements volatility. Organizational goals,
policies, structures, and work roles of intended end users all may change during the course of
a system’s development, especially as the number of users affected by a system’s develop-
ment increases. An iterative process of requirements development can address the problems
of volatility [Dobson 92]:

The traditional notion of the software development life-cycle with requirements
capture being completed before the design stage is no longer satisfactory.
Requirements capture and design are now seen to be symbiotic. The initial set
of requirements needed to start off the design process is gradually refined into
a systematic and coherent statement of requirements hand in hand with the
refinement of design.

Due to the problems of understanding and scope discussed earlier, user needs may not be
clearly expressed initially in the requirements, and the developer or requirements analyst may
make some incorrect assumptions based on this ambiguity. With an iterative process, those
mistaken assumptions can be detected faster and corrected sooner. For example, an iterative
process allows the user to receive feedback much sooner on the developer's interpretation of
the requirements, and to then correct problems as they are found. Many traditional develop-
ment approaches do not give one stakeholder community such as the user much feedback on
other stakeholders’ interpretations until the complete system is delivered. An iterative require-
ments engineering process is illustrated in Figure 3-1.

CMU/SEI-92-TR-12 13

3

E g

E 5

> &

Goals Operational Model Functional Model (Under- Specification

(Context Understanding) standing of Internals)

Figure 3-1 Requirements Engineering as an Iterative Process

A historical examination into the IEEE Standard Glossary of Software Engineering Terminol-
ogy reveals an increasing awareness of the iterative nature of requirements development. in
the 1983 glossary, “requirements analysis” is defined as “the process of studying user needs
to arrive at a definition of system requirements” [IEEE 83). This implies a one time, up front
requirements definition activity. In the 1990 glossary, however, a second definition has been
added for requirements analysis: “the process of studying and refining system, hardware, or
software requirements” [IEEE 90). This implies retrospective examinations of requirements
with refinement steps, i.e., an iterative requirements engineering process.

Requirements are not completely known at the start of a system’s development. They cannot
be specified completely up front in one voluminous document, but rather will evolve during the
analysis phases of a project and beyond. The communities involved in the elicitation, including
users, developers, and customers, all learmn and grow during the system’s development and
maintenance. This increasing knowledge possessed by the elicitation communities regarding
the system should be utilized to improve the system, rather than prohibited because the re-
quirements are to remain static.

14 CMU/SEF92-TR-12

4 Current Elicitation Techniques

Requirements elicitation has received little attention in the past from the software engineering
research community [Leite 87, p. 2):

From the survey, it was learned that requirements analysis, in particular
requirements elicitation, is a hard task, and that it is carefully avoided by most
of the software engineering researchers. We believe that most researchers
avoid dealing with elicitation of requirements, because it is an area where one
has to deal with informality, incompleteness and inconsistency. Instead,
research labeled as dealing with requirements, usually deals with specification,
and that is the main reason for the lack of agreement on the definitions of
requirements analysis and specification.

Despite this lack of research activity, there have been some efforts toward the development
of methods and techniques to address the requirements elicitation problems discussed in the
previous section. These approaches will be introduced here, along with a brief description of
their proposed solutions to the problem areas of scope, understanding, and volatility. A few
elicitation techniques receive more detailed treatment in the appendices.

The elicitation issues discussed in the previous section were categorized as follows:

® scope
- organizational and contextual factors, including the identification of
system goals, the problem context, and boundaries and interfaces

« avoidance of premature design activities

¢ understanding
« contribution of many varied stakeholder communities to elicitation
« contribution of more than one person to requirements elicitation
« large size of requirements and associated data resuiting from elicitation
« utility of multiple expressions (models) of the requirements

¢ requirements volatility

Table 4-1 lllustrates the level of applicability of the techniques discussed in this section to

these various issues, and thus indicates which elicitation problems a given technique or set of
techniques address.

Table 4-1 also contains two columns on the properties of the techniques themselves, rather
than the issues the techniques address. The column labeled “Technique Maturity” indicates
the relative maturity of these techniques. Some of the techniques discussed in this section are
very mature, having been tested and used in requirements elicitation for a decade or longer.
Others are newly proposed, primarily research efforts, or have not yet been used much in the
elicitation arena. A technique may receive no rating in this maturity column and still produce
wonderful results; it just does not have a proven track record showing its applicability to elici-
tation. The column labeled “Defined, Prescriptive Technique” indicates the amount of guid-

CMU/SEI-92-TR-12 15

Key
vv - (1) technique strongly recognizes
the issue & provides a means to deal
with it; (2) possesses the given quality

¢ - (1) technique supports the issue,
although perhaps indirectly or not as
strongly as other techniques; (2) tech-
nique possesses the given quality toa
limited extent

No mark - technique does not address
the issue at all or provides very little
support for it

Information Gathering

Organizational/Context Analysis
Avoidance of Premature Design
Various Contributing Disciplines
Prescriptive, Defined Technique

Multipie Expressions

Various Contributors
Volatility
Technique Maturity

Large Problem Size

Interviews

Structured Interviews (e.g., via IBIS)
Team Approach (e.g., JAD)

Use of Domain & Architectural Models

Reqs. Expression & Analysis
CORE

Delugach’s Multiple Views

SSM

PDM

Validation

QFD

Concept Prototyping

Iterative process use of elicit. techniques

Table 4-1: Matching Elicitation Techniques to a Set of Issues

ance incorporated into the technique so that the requirements elicitor knows how to proceed.
Some of the techniques have well defined steps and offer prescriptive advice. Others are ge-
neric and rely heavily on the skills and experience of the technique implementors for the tech-
nique to work effectively and efficiently in given elicitation situations.

4.1 Information Gathering

Interviews are perhaps the most common technique used for gathering information during re-
quirements elicitation. There are many social aspects of dealing with users in interviews [Zuc-
coni 89, [Berlin 89]. Berlin notes that “even a few hours of interviews can be very valuable,

16 CMU/SEI-92-TR-12

even when conducted by engineers who have had only brief training in interviewing and user
needs analysis” [Berling9, p. 94]. The information collected through interviews can address or-
ganizational and contextual factors provided that the right questions are asked. Likewise, if the
right people are interviewed the information will represent multiple stakeholders’ opinions
across a number of different communities affected by the development of the proposed system
being elicited.

The organization and expression of the information collected through interviews is a neglected
issue. There is a lack of standardized procedures for structuring information received via in-
terviews: “in particular, during the interviews necessary to collect information, no procedure
explains how the software analyst/tool documents the information, or determines the se-
quence of questions to ask” [Zeroual 89, p. 350]. Little tool support exists to help with the in-
terviewing process as well: “it is difficult first to make it efficient and short, and secondly to
automate the tasks it involves” [Zeroual 89, p. 350].

Other limitations with eliciting requirements primarily or exclusively through interviews result
from the tremendous responsibility placed on the requirements analyst. Assuming thz! inter-
view data was collected from the different communities affected by the system being elicited,
the analyst must integrate these different interpretations, goals, objectives, communication
styles, and use of terminology into a single set of requirements. This integration is a difficult
task unless the interviews are structured in some way. For example, the use of a glossary of
system-specific terms may reduce the number of inconsistencies in interviews that subse-
quently have to be resolved by the analyst.

Even with structured interview data, the analyst still must perform complex tasks such as de-
ciding whether a particular piece of information is premature design information or really a re-
quirement. These tasks require that the analyst is experienced in both the system domain and
with development techniques, qualifications which may be difficult to satisfy.

With so much decision-making resting with the analyst, the elicitation stakeholders may not
understand how the resulting requirements were derived and may refuse to share ownership
in and approve these requirements. The requirements themselves may not be understand-
able, e.g., if written with a behavioral tone in very domain specific terms the users may com-
prehend everything but the developers could have difficulty. Finally, this integration and
decision-making by the analyst takes time, and given that requirements are volatile, the longer
this process takes the more likely it is that the subsequent requirements no longer match the
stakeholder communities’ needs and expectations.

Other techniques can be used in conjunction with interviews to help structure them and facili-
tate integration. The gIBIS method, highlighted in Appendix A.1, addresses social issues by
inhibiting unconstructive rhetorical moves and supporting more constructive communication
[Conklin 88]. However, gIBIS makes you think within a particular framework of issues, posi-
tions, and arguments, and this can be disruptive during the early phases of a design problem
which is “critical and fragile and must be allowed to proceed in a vague, contradictory, and in-
complete form as long as necessary” [Conklin 88, p. 325).

CMU/SEI-92-TR-12 17

An advantage to having this structure of “issues, positions, and arguments” is that the analyst
now has a means of integrating interview data, through the matching of issues. Also, through
a comparison of this structure across different communities, the analyst can determine wheth-
er some individuals hid requirements in arguments for certain issues, believing that those re-
quirements were obvious or implicit. Those requirements may have been obvious to that
particular community, e.g., the end users, but perhaps need to be explicitly stated to another
group such as the developers.

Domain models are another way to structure interviews or team approaches. The use of do-
main models, such as the feature oriented domain models discussed in Appendix A.2 and
elsewhere [Kang 90), has many potential advantages for elicitation:

* improves understanding between multidisciplinary team by providing
structure for vast amounts of information needed for the acquisition and
expression of requirements; this results in better quality requirements and
lower development costs

e builds a reusable base of domain knowledge to leverage from in future
developments

¢ reduces ambiguity

* simplifies conflict detection by identifying issue points where conflict can
arise

e promotes conflict resolution by providing rationale at issue points

Cameron notes that the animations of problem domain models have sometimes had a dramat-
ic impact on the users' understanding of the models and on the whole process of elicitation of
requirements [Cameron 89]. Despite this promise, however, not much use has been made of
domain models for requirements elicitation. The use of feature oriented domain models in re-
quirements elicitation has not yet been demonstrated or tested. Even if it is successful, the
cost of developing domain models could be prohibitive.

Rather than just structuring interviews, another technique focuses on ensuring that information
is gathered from all of the affected parties, and that the resulting requirements meet the ap-
proval and understanding of all of these parties, rather than just being the work of the require-
ments analyst. These team approaches to requirements elicitation make sure that issues of
scope are properly addressed by getting the appropriate people involved at the very beginning
of requirements elicitation. Likewise, they explicitly recognize that there are issues of under-
standing dependent upon the variety of disciplines and number of people affected by the de-
velopment of a proposed system.

The team approach to requirements elicitation is characterized by JAD, an acronym for Joint
Application Design. JAD focuses on improving the group process and getting the right people
involved at the start {Zahniser 90]. This technique has been used successfully by IBM since
the late 1970s, and its advantages include the promotion of cooperation, understanding, and
teamwork among users, developers, and customers. Developers help users formulate prob-
lems and explore solutions, while users share ownership of the requirements and associated

18 CMU/SEI-92-TR-12

documents. Through the use of structured meeting procedures, facilitation protocols, and vi-
sual aids, JAD enhances idea generation and evaluation, communication, and consensus
generation. Guidance on using JAD is provided in [Wood 89], which emphasizes its use for
online, transaction-based systems. JAD is also discussed further in Appendix A.3.

While this technique has been used successfully, a recognized problem is that all of the par-
ticipants funnel their ideas through a facilitator or recorder. Thus, the recorder may inadvert-
ently impose an interpretation on the collected data not shared by the group. For integration,
JAD is dependent on the skills of the recorder, much as the integration of structured interviews
is dependent on the skills of the requirements analyst. An ideal method would allow for the
transparent capture of the information discussed at the meetings and the efficient organization
of this information.

Rather than attempting to perform both scoping activities and the gathering of needs and ob-
jectives from users and customers simultaneously, some methods define organizational and
context analysis as an explicit first step in elicitation, to be followed by other information gath-
ering activities. These methods, such as the one presented in [Mittermeir 90], emphasize the
importance of an objectives analysis for defining the organization's objectives, constraints
against full achievement of those objectives, and their influences and interactions. The method
described in [Mittermeir 90] does not contribute any additional technique to Table 4-1 and
hence it will not be discussed further here. It does prescribe a different way in which a tech-
nique such as interviews can be used to first perform objectives analysis before other elicita-
tion activities.

The ORDIT methodology, the product of an ESPRIT |l project, also emphasizes the definition
of organizational requirements [Dobson 91], [Dobson 92]. The ORDIT (“Organisational Re-
quirements Definition for Information Technology”) methodology explicitly recognizes that us-
ers tend to work in a collaborative or cooperative way in order to achieve an overall objective,
and the aim of the ORDIT methodology is to “produce IT systems which match not only the
organisational and functional needs of the individual end user, but also those of groups of us-
ers and their associated usability and acceptability requirements” [Dobson 91, p. 334].

4.2 Requirements Expression and Analysis

Elicitation is concerned with gathering information from various stakeholders in order to derive
the requirements for a system. This collected information needs to be represented in some
way, and ideally the gathered statements are expressed “in a notation which elucidates their
implications, prompts further questions, correlates different aspects, and facilitates detailed
analysis” [Southwell 87, p. 195].

Many current elicitation approaches represent the requirements from different viewpoints, in
order to promote understanding and the gathering of information from the many communities
involved in elicitation. This viewpoint approach is exemplified by CORE, which is discussed
further in Appendix A.4.

CMU/SEI-92-TR-12 18

CORE, an acronym for COntrolled Requirements Expression, and the Analyst, a CORE sup-
port environment [Stephens 85), represented the “state of the art” in requirements analysis as
of 1988 [Finkelstein 88, p. 186). GEC Plessey Telecommunications, U.K. (GPT), report their
experiences with CORE in [Milsom 89], and summarize its benefits as follows:

e CORE provides a framework for analysis
* it expresses requirements in a structured diagrammatic notation

« the notation fosters communication
« it is less ambiguous than natural language
* CORE identifies design constraints at an early stage

e CORE supports early verification because both the target system and its
environment are modeled
The limited tool support for CORE is noted as an inhibitor for its use on medium and large de-
velopment projects. GPT summarizes their assessment as “CORE is a powerful method for
gathering requirements but it lacks a standard notation and effective tool support” [Milsom 89,
p. 138].

To strengthen their requirements engineering process, GPT uses CORE in conjunction with
Specification and Description Language (SDL), which is “a well-defined notation which can be
used to describe both requirements and design, and for which good tool support is emerging”
[Milsom 89, p. 138]. Using SDL in combination with CORE provides enhanced communicabil-
ity, since SDL is a powerful and compact notation which is more familiar to engineers and cus-
tomers than CORE. SDL also enhances traceability between requirements and design
[Milsom 89].

CORE is one of the few truly prescriptive methods available for guiding requirements elicitation
[Kramer 88]. However, CORE does not express timing behavior very well, and needs to better
support more complex data descriptions [Kramer 87]. Also, CORE, like other top-down meth-
ods, does not support reuse well [Finkelstein 88, p. 187]:

...the underlying philosophy of methods like CORE, which proceed in a ‘top-
down’ fashion from the identification of viewpoints, agents or the like, actively
militates against re-use, which is inherently ‘bottom-up.’

In CORE " . combined viewpoint modeling stage, “only a subset of all possible transaction se-
quences can be considered”, but despite this limitation it is noted in the same source that “this
stage is a meaningful verification of the product specification” [Milsom 89, p. 139). Therefore
support for verification is provided, although it is incomplete and not enforced. Finally, despite
CORE’s utilization of viewpoints, including user viewpoints, other requirements engineering
researchers argue that more is needed and that ‘“there is still a lack of an overall methodology
for incorporating the user perspective into requirements specification” [Macaulay 90, p. 94].

20 CMU/SEI-92-TR-12

Other requirements elicitation process models described in the literature make use of views to
promote understanding and structure information gathering activities. One such process mod-
el is the Planning and Design Methodology (PDM), outlined in [Mays 85]. PDM is guided by
the following principles:

e Understand the rationale of the requirement.

e Verify the rationale and the proposed solution with the customer.
¢ Define the operational environment.

e Prioritize and establish business justification.

e Emphasize usability as well as function.

The first two principles address the importance of understanding and verifying the require-
ments of various stakeholders as well as addressing the “why” underlying those requirements.
A technique such as gIBIS or a features model can be useful for capturing this rationale. The
third principle emphasizes contextual factors, while the principle concerning prioritization is
one way of dealing with rigsk and requirements volatility. One way of achieving this prioritization
is through the use of Quality Function Deployment, in the manner described in Appendix A.5.
The final principle on usability highlights the needs of one particular stakeholder group: the end
user community.

PDM consists of requirements collection, problem analysis, solution definition, and system de-
sign. The three activities of synthesis, analysis, and communication occur within each phase.
Synthesis is the construction of a work product from a number of initially unrelated sources of
information. Analysis is the examination and verification of a given work product for consisten-
cy and completeness. Communication concems the review and approval of the resulting doc-
uments by technical and nontechnical personnel. As with CORE, the concept of viewpoints is
used by PDM to present a structure whose content is relevant to various types of reviewers.

An open issue with the use of multiple views is how to best communicate those views back to
their authors. For example, GPT used a single representation (SDL) to communicate the re-
quirements, as did the elicitation approach presented by Jokela and Lindberg [Jokela 90],
which made use of Statecharts for both the full requirements model and user oriented models.

Other methods tailor the representation of these viewpoints to the different views. For exam-
ple, Deutsch presents a method where real-time systems are described by the requirements
model, the operations-concept model, and the implementation model. These three models
represent the viewpoints of the customer, the user, and the implementer, respectively. Deut-
sch notes “there is no single modeling method or language rich enough to represent all as-
pects of the system and still be understandable.... Multiple views are needed” [Deutsch 88, p.
40). Understanding is enhanced through the use of multiple expressions, but integration and
verification is hampered. An alternative approach is to use a single means of expression so
that integration is easier, perhaps at the expense of understanding. There are potential prob-
lems with integrating multiple views, however [Cameron 86, p. 239]:

CMU/SEI-92-TR-12 21

...while it is a very appealing idea to make multiple descriptions of the same
system, in effect to be allowed to view the same system from different
perspectives, the idea does not really become useful unless there is some way
to put the different descriptions together.

A newer approach to requirements elicitation which incorporated the notion of viewpoints is
the muitiple viewed approach defined by Harry Delugach in his Ph.D. thesis [Delugach 91]. His
research addressed Cameron’s criticism of how to put the different views together: conceptual
graph representations are used for expressing the views, with structural analysis then per-
formed on the conceptual graphs to associate views and find counterparts.

This approach has the advantage that views can still be captured using familiar techniques
such as entity relationship diagrams, data flow diagrams, and state transition diagrams, with
the conversion from these representations to extended conceptual graphs being done auto-
matically. The meaning of concepts is no longer based on their names, but rather on their con-
ceptual graph representations, and the multiple views promote both understanding and
consistency checking.

However, a major criticism of the approach given the volatility of requirements is that “it is not
clear how analysis couid be incrementally pe-formed, i.e., just the affected parts reanalyzed”
[Delugach 91, p. 59]. Other problems concern how to get a view expressed initially, since:

¢ The participant does not yet know what is possible or reasonable.
* Many actual requirements are pervaded by implicit assumptions.
* Different people have different ideas of what they want in a system.

Finally, even with the views expressed finding the overlaps between views is a large polyno-
mial problem. Multiple views are assumed to be at the same level of detail, nonfunctional re-
quirements are not considered well, there is no consideration for rapid prototyping and
traceability, and there is no support for incremental change. Also, the author admits that “un-
fortunately, we do not have the time or resources to properly measure muitiple views’ cost ef-
fectiveness on an actual project” [Delugach 91, p. 91].

Another elicitation approach to improving understanding is based not on views but rather on
models. Models are considered as alternative representations of the requirements, such as
data flow diagrams. The use of models for requirements elicitation has been noted in [Cam-
eron 86], [Benyon 87], [Leite 87), [Deutsch 88}, [Colbert 89], [Goodrich 80] and numerous other
sources. For example, Jokela and Lindberg utilize user-oriented models to improve the com-
munication between the users and the analyst, which also stresses the evolutionary nature of
model building [Jokela 90, p. 294]:

2 CMU/SEI-92-TR-12

In this paper, our discussion was based on a top-down approach, from the full
model to the user models. Bottom-up approach is also applicable. In some
applications the user interface and user operations are utmost important. We
can first specify the system operation from the user viewpoints, and thereafter
expand the model to a full one. In a typical realistic situation the analysis
process is iterative where different user models and the full model are
developed intertwined and iteratively.

Many elicitation techniques emphasize the use of a graphical notation to make the require-
ments models easy to read, thereby allowing these models to form “a good basis for commu-
nication between the analyst and the users” [Jokela 90, p. 289]. Benyon and Skidmore claim
that “the visual attractiveness of the DFD [data flow diagram] makes it more effective than
verbs” of natural language representations [Benyon 87, p. 3].

This claim was not supported by a study [Nosek 88] which found that the choice of represen-
“tation, be it graphical or textual, had no effect on the level of user understanding of system
requirements. The methods tested (HIPO, system flowcharts, DFD, narrative text, and Warn-
ier-Orr diagrams) all were equally effective statistically in achieving user validation of the re-
quirements document. This suggests that the actual form of the model is not as important as
the semantic content of the model. The content, and not solely the form, of the model deter-
mines its value. This point is emphasized repeatedly by Leite [Leite 87] and supported by the
following quote of John von Neumann [Weinberg 88, p. 157]: “There’s no sense being precise
about something when you don't even know what you are talking about.”

Other research work on new approaches to requirements elicitation concentrates on precision
and the use of formal models for representing requirements. These formally based techniques
do not scale up well to practical industrial software development in large part due to a lack of
basic tool support [Finkelstein 88, p. 186]. Another reason offered to explain why these tech-
niques do not scale up well is “because little attention has been paid to the method of guiding
and organising the activity by which a formal specification is obtained from an informal appli-
cation concept” [Finkelstein 86, p. 236].

One inhibitor to using models during requirements elicitation is the difficulty of developing such
models: “in practice the significant abstraction of the problem domain may be hard to find and
the skill of making such abstractions is hard to teach” [Cameron 89, p. 2/1]. The difficulty in
function-based structured analysis methods is in identifying appropriate functions and data
flows. Similarly, “identifying the objects in a problem is the hardest part of this or any object-
oriented method” [Colbert 89, p. 414].

Elicitation techniques such as CORE, Delugach’s multiple views, or the use of various models
can assist in requirements expression and analysis. A criticism of most of these elicitation
techniques, however, is that they do not scale up well. They do not effectively handle the elic-
itation of requirements for a large problem area or affecting a large number of people. Hierar-
chical decomposition of the problem area into manageable parts is one way requirements
analysts can address this issue [Dubois 88]. Such “modularization” is important during the elic-

CMU/SEI-92-TR-12 7]

itation of requirements [Macaulay 90]. Most methods for analysis and design have at an early
stage some way of decomposing the problem into manageable areas [Kramer 88]. There may
be many criteria that suggest one decomposition over another, e.g., organization of the user's
institution, reusability, or extensibility [Bailin 89]. Decomposition is often explicitly noted as a
phase of the elicitation process [Zeroual 89].

Top-down decomposition can be criticized for placing too much importance on early decision-
making [Cameron 86, p. 239}:

Each decision about the decomposition of a subsystem depends on the
decisions that have lead to that particular subsystem. This hierarchical decision
structure makes the early decisions very critical. A bad early decision may not
be discovered until very late. The designer must exercise tremendous foresight
to make good decompositions.

Returning to the technique of multiple views, understanding a large problem domain may not
just be a matter of decomposition but of composition as well, composition of multiple views.
The multiple view approach expressed in Delugach’s thesis [Delugach 91] postulates that ef-
fective requirements development depends upon the participation of everyone affected by a
proposed system. Each participant involved in the requirements development process has a
different view of the target system, and describing any participant's view of the system or en-
vironment will tend to improve the overall understanding of that system. The final requirements
are composed from the multiple participants’ views.

As a problem becomes more complex and addresses a broader scope, it becomes increas-
ingly unlikely that any individual will be able to understand the problem well enough to explain
and develop comprehensive solutions and refine the problem formulation. Rather, only
through a composition of multiple people’s views of a problem will the requirements be able to
adequately be elicited and defined. A compositional approach seems to be a necessary, albeit
not sufficient, technique addressing problems of understanding in elicitation scenarios where
the system is large and complex. With compositional approaches, however, problems of un-
derstanding still result from difficulties in integrating the multiple views of the system, and in
having these views expressed consistently and in such a way that they are understood by all
the elicitation partners.

4.3 Validation

One often cited technique for dealing with requirements volatility is to validate early and often
that the information gathered so far and the representation of that information is consistent
with the elicitation communities’ needs and expectations. This repeated validation is part of an
incremental approach to elicitation, a concept introduced in Section 3.3. Requirements elicita-
tion should also be interleaved with subsequent activities such as the design and early proto-
typing of critical components [Andriole 90, p. 6):

24 CMU/SEI-92-TR-12

Consequently, systems analysts developed a new design perspective, one that
assumes that requirements cannot be captured the first time through and that
several iterations may be necessary to define requirements accurately. This
new perspective is anchored in the value of prototyping.

Prototyping of core functionality can be used to develop early executable versions of the re-
quirements model. Indeed, prototyping has been cited as a cure for the problems of under-
standing during requirements elicitation in many sources [Jordan 89], [Andriole 90]. However,
prototyping is not the silver bullet [Dubois 88, p. 394]: “it may be costly to develop a prototype,
which is not the ultimate solution anyway; users are assumed to accept the prototype when
they actually only accept its behavior in the cases they have tried.”

Quality Function Deployment (QFD) is another useful technique for validation. QFD allows the
“Voice of the Customer” to be captured, and then the proposed requirements of the system to
be validated based on whether or not they reflect these expressed customer needs [Schubert
89]. As outlined in Appendix A.5, QFD helps to identify user requirements that have not been
addressed by the developer, as well as developer-proposed features that do not support any
requirements. In addition to highlighting such omissions, QFD also documents requirements
that are highly rated by the user and receive little attention by the developer-proposed fea-
tures.

CMU/SEI-92-TR-12 25

26

CMU/SEI92-TR-12

5 An Elicitation Methodology Framework

Many requirements problems are due to poor requirements elicitation, including the resulting
requirements being ambiguous, incomplete, not verifiable, inconsistent, irrelevant, and not
correct because they do not reflect the stakeholders’ needs and objectives. These problems
stem from issues of scope, communication, and requirements volatility. There are elicitation
techniques which address some of these issues, as discussed in the previous section and the
appendices. However, no technique is comprehensive enough to adequately cover all of these
issues in detail. Rather than advocating one technique over the others, a better approach to
requirements elicitation is to synthesize the various methods and techniques into a methodol-
ogy, which then can be instantiated based upon a target system’s attributes.

This section will present a process model which focuses attention on the problem areas of re-
quirements elicitation. It then will outline a strategy for requirements elicitation which improves
upon past elicitation techniques while incorporating their advantages. Based on this strategy,
a tailorable elicitation methodology will be presented, along with a discussion of the difficulties
of evaluating such methodologies.

5.1 A Requirements Elicitation Process Model

Recall that Section 2 established the context for requirements elicitation within the system de-
velopment process. Elicitation deals with fact-finding, information gathering, and integration in
order to obtain a set of requirements which describe a number of possible solutions. The re-
mainder of the requirements engineering process is concerned with validating that these re-
quirements satisfy the goals of all parties affected by the system being built, and with
communicating these requirements to developers via a specification. This section shall pro-
pose a process model for requirements elicitation which takes into account the problem areas
discussed earlier.

The requirements analyst is the party responsible for the capture of system requirements from
the user community and the communication of these requirements to the developer commu-
nity. In addition to these tasks, the requirements analyst must also make sure that the needs
of other affected communities are reflected in the gathered requirements, and that a proper
understanding of these requirements is communicated to all affected parties.

The process mode! outlined here recognizes the importance of this communication between
different stakeholders. It is in agreement with the paradigm underlying the Issue-Based Infor-
mation Systems (IBIS) method [Begeman 88, p. 255]:

The IBIS method...is based on the principle that the design process for complex

problems is fundamentally a conversation among the stakeholders (i.e.,
designers, customers, and implementors) in which they pool their respective
expertise and viewpoints to resolve design issues.

CMU/SEI-92-TR-12 27

Recognizing the importance of communication is not enough, though. The backgrounds and
motivations of the elicitation participants are often very different, and the process mode! con-
sists of two sets of activities to address this diversity. One set of activities is user-oriented,
while the other is developer-oriented.

The two sets of activities are performed in parallel, and can be grouped into tasks associated
with fact-finding, requirements gathering, evaluation and rationalization, prioritization, and in-
tegration. These task groups may be executed iteratively, as illustrated in Figure 5-1. This pro-
cess model is similar to the system requirements capture model outlined by Mittermeir and
others [Mittermeir 90), but in that model prioritization occurs before rationalization.

—»| Fact-Finding
A l

Regs. Gathering

¢ & Classification
A l

Evaluation and

Rationalization |
? Prioritization __l

Integration &
Validation

g

Figure 51 Proposed Requirements Elicitation Process Model

This elicitation process model is first executed during the concept exploration phase of system
development, which is initiated after the creation of a mission needs statement. Following this
phase, the first leve! of detail in the requirements specification is achieved. During the subse-
quent demonstration and validation phase, these specifications are validated, the unclear re-
quirements clarified, the unknown requirements identified, and the existing ones refined as
necessary. Based on communication mechanisms (such as prototyping) employed during this
phase, these elicitation steps are then cycled through again beginning with “requirements
gathering” to detail and improve the requirements document. Recall from Section 3.3 that not
all of the requirements for a system are typically known immediately. This implies that the dem-
onstration and validation phase is entered with incomplete requirements, and therefore that
these elicitation process steps are returned to after the first pass through the concept explo-
ration phase.

28 CMU/SEI-92-TR-12

User-Oriented Tasks

Fact-Finding
Identify relevant parties across multiple lev-
els.
Determine operational and problem con-
text, including definition of operational
modes, goals, and mission scenarios as ap-
propriate.
Identify similar systems.
Perform context analysis.

Requirements Gathering and
Classification
Get wish list for each party across multiple
levels.

Rationalization and Evaluation
Perform abstraction to answer questions of
the form “Why do you need X?”; this in ef-
fect moves from statements of “how” to
statements of “what”.

Capture rationale to support future require-
ments evolution.

Prioritization
Determine criticality, i.e., the critical func-
tions for the mission.

Integration & Validation
Address completeness by filling in as many
“to be determined” issues as possible.
Validate that requirements are in agreement
with originally stated goals.

Obtain authorization/verification to move

to the next step of development, e.g., the
demonstration and validation phase.

Developer-Oriented
Tasks

Fact-Finding
Identify domain experts (both application
area and development experts).
Identify domain and architectural models.

Conduct technological surveys, for later
feasibility studies and risk assessment.

Assess cost/implementation constraints im-
posed by the sponsor.

Requirements Gathering and
Classification

Classify wish lists according to functional,
nonfunctional, environment, and design
constraints; and also according to partitions
defined by domain models and the develop-
ment paradigm (e.g., top-down functicnal
decomposition or object-oriented).

Rationalization and Evaluation
Performrisk assessment, addressing techni-
cal, cost, and schedule concems (this in-
cludes cost/benefit filtering and feasibility
analysis based on technology availability).

Prioritization
Prioritize requirements based on cost and
dependency. Study how the system can be
incremented, and identify appropriate archi-
tectural models which support incremental
development.

Integration & Validation
Resolve conflicts (consistency checking).

Table 5-1:

Tasks Comprising the Elicitation Process Model

The tasks which compose this process model are listed in Table 5-1. With regard to the user
community, fact-finding begins with identifying the relevant parties at multiple levels within the
community, e.g., from a high-level commander for a strategic long term perspective to an end
user for the immediate perspective. The operational context and problem context are defined,

CMU/SEL92-TR-12 29

perhaps through goal trees and mission statements, which help with the later filtering of the
requirements. This includes an objectives analysis, which studies the user organization’s ob-
jectives, constraints against full achievement of the objectives, and their influences and inter-
actions [Mittermeir 90). Context analysis and the determination of operational modes and
mission scenarios completes the user-oriented task fact-finding activities. The developer ori-
ented fact-finding tasks are performed in parallel. These fact-finding tasks are important [Ber-
lin 89, p. 93]:

Studying user needs is a first step to any solution, along with gaining an
understanding of available technologies and existing tools. These two tasks
interact. Without an understanding of technologies one may aim for the
impossible, and without an understanding of needs, one may solve the wrong
problem.

The communication between the user-oriented and developer-oriented activities is cyclical,
and enhanced via modeling. The communication enhancement is desirable. The representa-
tion of the requirements should promote understanding while allowing for inevitable change,
and hence this representation should be introduced as early into the requirements engineering
process as possible while still maintaining the desirable characteristics of modifiability (exten-
sibility and evolvability), readability, and analyzability.

This process model will be discussed further in Section 5.4, along with techniques that can be
used to achieve the tasks in the model.

5.2 Methodology over Method

The degrees to which requirements will be influenced by contextual factors, require commu-
nication between different communities, involve large quantities of data, and change over time
are dependent on the target system, i.e., the proposed system to be developed. To address
this dependency, the requirements elicitation approach to solving the problems stated earlier
will be a methodology, as opposed to a single method. The difference between these terms is
stated eloquently as follows {Checkland 89b, p. 101}

It is the essence of a methodology—as opposed to a method, or technique—
that it offers a set of guidelines or principles which in any specific instance can
be tailored both to the characteristics of the situation in which it is to be applied
and to the people using the approach...Such is the variety of human problem
situations that no would-be problem solving approach could be reduced to a
standard formula and still manage to engage with the richness of particular
situations.

Target systems have different organizational and environmental contexts. For example, one
target system might be a complete stand-alone system with very few environmental con-
straints, while another might be a very small component of a larger existing system, with lots
of interfaces to that larger system and constraints imposed by the existence of that larger sys-
tem.

30 CMU/SEI-92-TR-12

Different target systems also involve different elicitation communities. One target system
might be developed by the users themselves because they have both the domain experience
and the development experience. Another may have disjoint user and developer communities.

Target systems will have varying amounts of information necessary for :licitation, e.g., the us-
ers who are also developers working on a small stand-alone system will need less data than
the separate developer community building a critical component of a larger system for many
different user communities.

Finally, a target system will have different degrees of stability, with the replicating of a long-
standing manual task being more stable than the development of a task which does not have
a parallel in current practice.

The approach to requirements elicitation presented here shall thus be problem-specific. At-
tributes of the target system, including organizational constraints such as the backgrounds of
the involved communities, the number of environmental constraints, project constraints such
as cost and time limitations, and the potential for evolution (as determined by the domain’s ma-
turity, the availability of standards, and other factors), will serve to instantiate the method to
use for elicitation for that particular target system. The instantiated method is derived from a
general elicitation methodology.

This problem-specific approach is endorsed in [Andriole 90, p. 9]:

...the problems the prospective system are intended to solve should determine
life cycle assumptions. Designers that begin a priori with a method will often
fail, if only because they may end up matching the wrong life cycle assumptions
with the wrong problems.

Andriole notes that analytical problem-solving requirements are best elicited through iterative
techniques, while problems with an absence of analytical requirements might well be modeled
via conventional, sequential methods.

Determining the elicitation approach to use based on the attributes of the problem is also rec-
ommended in [Benyon 87]. In this paper, Benyon and Skidmore define five systems analysis
approaches:

¢ soft systems approach: characterized by Checkland's Soft Systems
Methodology (SSM), which is discussed briefly in Appendix A.6; emphasizes
the subjectivity of systems analysis, i.e., there are a variety of legitimate
views of a problem situation, and the importance of an iterative approach to
the activity, e.g., the use of conceptual models to contrast the desired and
actual states of a system

® structured systems analysis and design: characterized by DeMarco’s data
flow diagrams; emphasizes data, that the systems represent
transformations, and the concept of hierarchy in developing models, e.g.,
start with context diagram and work toward functional primitives

CMU/SEI-92-TR-12 31

e traditional approach: appropriate for batch systems but not fiexible enough to
cover the range of modern systems; focuses on functional analysis, fact-
finding, and flow of control

e data-centered approach: looks at a static representation of the information
content of a system; it is independent of technology and hence allows a
variety of implementations, but “its emphasis on data, coupled with the
apparent rigour of its techniques, can lead to the development of neat
technical systems that ignore or contradict the political reality”

[Benyon 87, p. 4]

* participative approach: characterized by Mumford's socio-technical system
design [Mumford 81] and the use of prototyping; emphasizes understanding
by users of what they want and what is possible, an approach that responds
well to complexity and uncertainty

Rather than identify a particular approach which is the most valuable, the authors recommend
the following [Benyon 87, p. 5]:

We feel that the five methods are essentially complementary. Discussions
about which is best seem rather fruitless, because the success of an approach
is dependent upon so many external variables. It seems more useful to see the
five approaches as comprising tools available to the analyst, who then chooses
the correct tool or set of tools for a particular set of constraints and
circumstances.

A number of alternative methods for requirements elicitation are outlined in broad terms in a
paper by Stair and LaMothe [Stair 91), followed by a list of contingencies to determine which
approach to follow. Approaches for determining information requirements include:

¢ determining directly
¢ deriving from existing systems

* normative analysis (develop a generic model and then successively modify
the model to meet user needs)

* strategy set transformation
® critical success factors

* key indicator analysis

® protatyning

® scenarios

¢ information needs analysis

it is noted that selecting the best requirements method from this list “can be as difficult as de-
termining information requirements” [Stair 91, p. 35). The method to be used should be con-
tingent on the specific circumstances of the organization, including user experience, the level
of internal and external uncertainty, a clear statement of goals, overall orientation, and the lev-

32 CMU/SEI-92-TR-12

el of assistance. For example, with high user experience and low uncertainty, determining di-
rectly is the recommended approach, while with low user experience prototyping is
recommended.

The recommendations presented by Stair and LaMothe [Stair 91} begin to address the difficuit
task of instantiating an elicitation method depending on organizational factors, but are often
too simplistic in that for many cases, a single organizational factor is the only one used to rec-
ommend a given method. For example, the scenario technique is recommended if and only if
there is high external uncertainty.

It may be useful to define “method” and conclude this subsection with a contrasting of “meth-
od” to the “methodology” definition given above. Referring once again to the requirements en-
gineering literature, Kramer and others define a method as consisting of a grammar of steps
and principles for applying them rather than just a collection of notations [Kramer 88, p. 91].
Likewise, Mullery notes the presence of application rules in a method, defining a method as “a
collection of models for specification and a set of rules for their use” [Mullery 89, p. 1/1]. Any
single model is an incomplete representation of a real entity, so several models may be nec-
essary to illustrate or analyze different aspects of the entity. Examples of low level models for
expressing requirements are state transition, procedural decomposition, process/data flow
networks, organizational structure and decision support. Finkelstein and Potts note the con-
straints that a method's application rules place on the requirements engineering process
[Finkelstein 86, p. 237]: “A method necessarily constrains the practitioner's freedom.”

The strategy expressed here is based on the notion that the selection of a method, with its in-
herent constraints and sets of application rules, cannot be done independently from a consid-
eration of the target system. Rather, an elicitation approach ideally is instantiated from a
methodology in order to best address the particular target system’s organizational constraints,
architectural restrictions, and involved audience’s backgrounds.

5.3 Integration of Techniques

The problems of Section 3 are best addressed through the development of a tailorable elicita-
tion methodology in agreement with the process model described above, along with guidelines
on how to fit the methodology to different projects. The methodology must address the orga-
nizational, architectural, stakeholder, and problem-specific issues identified eartier.

Current work on requirements analysis has focused on the structure and notations for specifi-
cation, without providing any guidance as to how the specification is to be elicited from the user
in the first place [Kramer 88, p. 86]. The elicitation methodology should eventually be prescrip-
tive in nature in order to provide this guidance. However, this methodology is only being intro-
duced in this section. It is important to note that guidelines for tailoring the methodology to
specific problems will most likely be developed, validated, and refined iteratively. As the meth-
odology matures and more problem areas are addressed, the framework will grow as well, so
this section should not be treated as the definitive, comprehensive solution to requirements

CMU/SEI-92-TR-12 33

elicitation. Rather, it should be seen as a first step towards integrating partially successful past
elicitation techniques into a more useful methodology based on the process mode! presented
in Section 5.1.

The proposed elicitation methodology will be composed of the following:

o fact-finding: this includes the following:

« an examination of the organization into which the target system will be
placed

« high level statements of the target system’s mission or role
« determination of any constraints on the architecture
« determination of the existence of similar systems

Typically the system to be developed is a component of some larger system.
There will likely be many people affected by its development as well. The
socio-technical approach to fact-finding espoused here is similar to the
ORDIT methodology where the system is “viewed as a whole by placing it
within the broad operational environment with the user as an integral part of
the system” [Dobson 92]. Organizational analysis addresses who is
knowledgeable about the target system and who will be affected by it.
Architectural considerations, as well as project constraints such as limits on
cost, help to answer how something is to be built.

* requirements gathering: capture information through the use of
multidisciplinary views. Such views express what s to be built.

¢ evaluation and rationalization: expose inconsistencies in the gathered
requirements. Determine why something has been expressed as a
requirement.

e prioritization and planning: determine the relative importance of the
requirements, i.e., answering when requirements should be addressed in
relation to each other.

¢ integration and validation: bring together the information collected from the
previous steps into a set of requirements, and validate that these
requirements are in agreement with the goals originally extracted during fact-
finding.

5.3.1 Fact-Finding

Referring to Table 5-1, the very first step in requirements elicitation involves determining what
is the problem to be addressed, and who needs to be involved in this decision-making as well
as who will be affected by the problem’s formulation and eventual solution. The output from
this activity includes:

¢ a statement of the problem context
* the overall objectives of the target system
¢ boundaries and interfaces for the target system

34 CMU/SEI-92-TR-12

in well-understood problem domains, much of this information may already exist in some form
and be readily available. In other cases the definition of the problem context may be the most
difficult elicitation activity and may need multiple passes in concert with validation activities be-
fore it is done correctly.

Tasks at this stage include an analysis of operational, problem, and organizational context,
identification of similar systems, and the assessment of cost and implementation constraints
imposed by the customer. The problem scoping activities involved in these tasks are vague
and open to interpretation. it is best to have all the affected parties participate in this stage,
including users, developers, and customers. This results in shared ownership among these
communities of the context analysis and problem formulation process, which will impact posi-
tively on the volatility of the requirements. If everyone involved agrees up front to the scoping,
there is a better chance that the “right problem” will be addressed and that major changes in
the requirements will not occur later in the development process.

An effective approach to achieving this cross-disciplinary communication for fact-finding is the
use of a group process technique, such as JAD. All the affected parties should be represented
in the group which will perform these early fact-finding tasks. This promotes shared ownership,
rapid early problem formulation, and an aligned perspective and understanding between the
elicitation communities of the problem to be solved and the scope of the subsequent require-
ments.

Within a structured meeting technique like JAD, other techniques can be used to promote
communication between the individuals from potentially many disciplines. SSM's “CATWOE"
information gathering model, discussed in Appendix A.6, can be used to identify the essential
objectives of the problem situation. IBIS, discussed in Appendix A.1, can be used to record the
different issues, their associated positions, and arguments for and against those positions
which are raised during the group discussion. This record can then be used to support the con-
sensus generation activities which are part of the JAD process. Such arecord is also very valu-
able given that this fact-finding stage will likely be returned to iteratively during the
requirements elicitation process.

Later passes through fact-finding may not necessitate a structured group meeting technique
such as JAD to refine the requirements. It may be that subsequent passes through the elicita-
tion stages outlined here only touch on fact-finding, such as when a new community of users
is recognized as being affected by the development of the proposed system.

5.3.2 Requirements Gathering

Depending of course on the system being developed and the groups which will be affected,
the requirements gathering stage is a combination of both compositional and decompositional
approaches. In early problem formulation stages, it is important to gather as much information
as possible from users, developers, and customers. Some of this information may come from
the group development techniques employed during fact-finding, such as JAD. More informa-
tion can be gathered through the use of interviews directly with end users and other affected

CMU/SEI-92-TR-12 35

parties. Questionnaires, observations, and simulation environments are other techniques that
can be utilized to get information from different individuals and groups [Andriole 90]. The out-
put from this activity includes:

e customer and user oriented objectives
e customer and user oriented needs and requirements

These needs and requirements are verified against the overall objectives of the target system
expressed during fact-finding.

When there are many customers or users contributing requirements to the analyst via tech-
niques such as interviews, a number of sets of needs and requirements, or views, will be col-
lected. It is very difficult for the analyst to identify and resolve inconsistencies between these
different views if there is no additional structure to the information. One way to provide this
structure and organize information from multiple individuals is through the use of the CORE
method for requirements extraction, as discussed in Appendix A.4. Eventually, these multiple
views are then composed into the requirements for the system.

The views are better understood if they can be structured into manageable pieces. This is es-
pecially true given that the elicitation process will be incremental, to deal with inevitable chang-
es in requirements. If we return to monolithic views of the complete system, it will be very
difficult to both comprehend such a large view and also to find portions of that view which may
be affected by an incremental change to the requirements. Thus, there must also be a decom-
positional process associated with requirements gathering, where the views can be broken
down into meaningful components.

Ideally, there are applicable domain and technological models for such decomposition. For ex-
ample, with the domain modeling approach outlined in Appendix A.2, a number of models can
be used such as the features model and entity-relationship model to better communicate to
the elicitation parties the information expressed in that view. CORE emphasizes the use of
data flow diagrams for such decomposition of views. The representation used for such decom-
position is very dependent on the application domain, e.g., the data flow representations of
CORE are noted as failing to adequately capture formalism which may be necessary in re-
quirements for embedded systems [Finkelstein 86).

5.3.3 Evaluation and Rationalization

A risk assessment should be performed to address technical, cost, and schedule concerns. in
addition, the rationale behind the information gathered in previous stages should be examined
to determine whether the true requirements are hidden in this rationale instead of being explic-
itly expressed. This rationale and risk assessment are the two main outputs from this activity.

IBIS is a well-suited technique for capturing the rationale in the issues-positions-arguments
framework during group development techniques and interviewing. Structured models of the
domain and the technology are extremely useful. For example, with the features model de-
scribed in Appendix A.2, issues are identified where alternative selections can be made, and

36 CMU/SEF92-TR-12

decisions describe these alternatives and the rationale associated with these alternative se-
lections. Given a view's decisions on these issues, we automatically gain an understanding of
the rationale associated with the decisions via the features model.

Once the rationale has been collected and examined, inconsistencies can ideally be found and
better choices on decision points or issues made to both resolve these inconsistencies and
address the needs reflected in the rationale. In addition, this rationale is extremely useful in
later passes through the elicitation methodology as documentation on why particular choices
were made. If incremental changes to the requirements are to be made, these changes can
be checked to see if they are in agreement with the rationale underlying the rest of the existing

requirements.

5.3.4 Prioritization

Incremental development, of both the system and the requirements, is stressed in the process
model outlined in an earlier section. If requirements are prioritized, then high priority needs can
be addressed first, and the subsequent requirements changes defined and reexamined, be-
fore low priority needs (which could change as well) are implemented. This can result in cost
and time savings when processing the inevitable requirements changes during system devel-
opment.

The requirements must be prioritized based on cost, dependency, and user needs. Architec-
tural models can help with dependency relationships and determinations on how the system
can be incrementally developed. QFD is an ideal technique for determining critical system fea-
tures and prioritizing user needs.

5.3.5 Integration and Validation

An important advantage of group development techniques such as JAD is that they promote
shared ownership of the developed requirements, with an improved definition of scope as well
as reduced chance for future requirements changes. These techniques stress that integration
of multiple views should occur as much as possible through the involvement of all the affected
communities, so that this shared ownership is not lost. If integration is done by a single elici-
tation community such as the developers following fact-finding, requirements gathering, and
the other earlier stages, then the integration will be viewed as the developers’ interpretation of
the requirements, and may be criticized as not incorporating other important interpretations as
well.

There are a number of ways of handling this problem. One is to repeat a group development
technique later in the elicitation process, so that group ownership of the integration may again
take place. Since senior level managers are often involved in such group development, it may
be impossible to get such commitment both during fact-finding when their contributions are
critical as well as at the end of the elicitation process. Such involvement by senior personnel
at both the start and end of conceptual development may be rejected in favor of involvement

CMU/SEI-92-TR-12 37

of these people at the start of conceptual development, and then later during demonstration
and validation, with corrective feedback loops going from demonstration and validation and
later phases back to conceptual development.

The integration tasks might be performed primarily by the systems analyst, and the resuilts of
the elicitation process communicated to the other involved communities through various strat-
egies such as prototyping. These communications can be viewed as lying outside the realm
of concept exploration and requirements elicitation and instead being the first activities of dem-
onstration and validation. This validation of the requirements by all affected parties ensures
that their concerns are met. Subsequent passes through the elicitation methodology outlined
here address the requirements deficiencies, inconsistencies, and other problems found during
the demonstration and validation steps.

In cases where the requirements analyst is responsible for integrating the information from the
previous stages into a set of requirements meeting all the desirable attributes outlined in Sec-
tion 2, there are a few techniques which can be used. For example, the existence of domain
models and architectural models provide “maps” for how to organize information in a require-
ments document, and how to present this information to the different elicitation communities.

When multiple views are used, these views can be integrated together through the conceptual
graph techniques described in Delugach's Ph.D. thesis [Delugach 91]. This is a nice automat-
ed approach to viewpoint integration, but does not support incremental requirements develop-
ment very easily and also places some assumptions on the different views, such as that they
are descriptions of the problem given at the same level of detail.

QFD can also be used for integration and validation by relating the user and developer views
of the system, as discussed in Section 4.3. The integration of user and developer views may
reveal shortcomings which necessitate that earlier stages of the elicitation methodology be re-
visited.

5.3.6 Methodology Summary

This methodology may be criticized as being too abstract, but these concerns are offset by the
benefits of being inherently flexible, which are noted in Section 5.2. Both organizational and
individual constraints are taken into consideration by the methodology, in agreement with
[Macaulay 90, p. 94]:

The new approach would need to adopt a symbiotic approach which
recognises that individuals must satisfy organisational needs and equally
organisations must satisfy individuals’' needs, and all of these needs must be
satisfied by the product.

Difficulties in applying this methodology due to its generality can be overcome by specializing
it according to a given elicitation scenario and the characteristics of the affected parties. For
example, the development of a novel system affecting a number of user and client communi-
ties may very well focus a great deal of effort on fact-finding, with additional techniques to aid

38 CMU/SEI-92-TR-12

in this stage of elicitation as well as more guidelines for conducting fact-finding sessions. The
development of a system revision involving the same users and clients as earlier may focus
less on fact-finding and instead have additional techniques and guidelines for prioritization and
integration.

The methodology outlined here does not discuss how these specializations to meet different
scenarios and elicitation communities should be defined. Rather, it provides a general frame-
work with the assumption that requirements elicitors will tailor it accordingly. This philosophy
was expressed earlier, and is in agreement with the philosophy behind SSM, discussed in Ap-
pendix A.6.

The focus of the methodology is on communication issues and stakeholder issues, as op-
posed to issues of notation. Too much early emphasis on notation has been pointed out as a
problem with elicitation in Section 4.2. This advice is repeated in an argument against the early
use of formal methods [Macaulay 90, p. 100]:

While there is a role for formal methods in the requirements specification
process, it could be argued that the initial stages of requirements capture are
necessarily vague, ambiguous and incomplete, as they are the subject of much
negotiation between individuals. Formal methods can be most successfully
applied after the initial user requirements have been agreed.

5.4 Evaluation Criteria

Ideally, foliowing the definition of a new elicitation methodology an evaluation study could be
run to determine the benefits provided by that new methodology over current practice. How-
ever, there are many difficulties associated with the evaluation of requirements engineering
methodologies, a few of which will be discussed here.

Two evaluation criteria for requirements capture methodologies are:

1. effectiveness, the achievement of the highest valued goals; and

2. efficiency, achieving goals without consuming more resources than
necessary.

Unfortunately, these criteria can be in conflict [Fowler 90}, so a methodology which excels on
effectiveness might be very poor in efficiency and vice versa. The goals of a methodology
need to be clearly stated in order to adequately judge how well that methodology achieves its
goals and to determine whether a given methodology is successful.

Evaluation studies of development methodologies are plagued by the difficulty of controlling
for developers’ experience and level of creativity, and the unlikelihood of commercial develop-
ers employing parallel designs for the objective comparison of methodologies. Evaluation
strategies designed to overcome control problems and yet maintain the necessary rigor in-
clude the following, which are presented along with the authors’ criticisms [Fowler 90]:

CMU/SEI-92-TR-12 39

¢ Develop a taxonomy of parameters which define a particular class of
methodology. The major problem with this approach is that the
methodologies do not all address the same parameters. Also, the evaluators
generate the parameters from some notion of an ideal methodology, and in
many cases the methodologies differ because “there is not or cannot be an
idealised form” [Fowler 90, p. 192].

¢ Develop various “yardsticks” against which the features of different
development methodologies can be compared. No value judgment is implied
by this approach, but the weakness in this approach is that “yardsticks are
generated empirically by analysing the content and approach of established
methodologies to determine what factors have been considered useful in the
past” [Fowler 90, p. 192). The criteria shouid not only come from past
behavior. Also, a number of comparable methodologies may not exist in a
given area.

¢ Use case studies to compare usage of a methodology with its developers’
claims. Fowler notes that “it is fundamental to this approach that the
evaluators are well trained in using the methodology” [Fowler 80, p. 193]. The
reliability of a methodology may be difficult to measure because the same
case is likely not repeatable, and case studies rarely involve a comparative
element.

¢ Survey the methodology users. This really addresses the assessment of a
methodology’s external validity (i.e., it is usable by requirements engineers),
not internal validity, and it also may not easily separate methodological
issues from other contextual factors.
The authors conclude that “in the final analysis a requirements capture methodology is of val-
ue only if the end product is considered to be better, in some specified way, than products de-
veloped by alternative means” [Fowler 90, p. 194].

The evaluation of methods is dependent upon a number of factors, including the following
[Hackathorn 88, p. 209):

e current state of the information technology employed
* level of integration between methods ‘

* perceived suitability in specific situations

* organizational experience with the method

e skills and expertise required in using the methods

* commercial support, pricing, and training involved

Because of these various dependencies, it is difficult to generalize the potential benefits and
constraints of an information engineering method, including a requirements elicitation method.
As noted elsewhere [Winokur 90, p. 88], it is essential that complete training be provided for
the methodology and for all supporting tools before the method is applied to a real system
analysis for evaluation. Without proper training in the methodology and support tools, a meth-
od may be misused and hence the evaluation of that method may be flawed.

40 CMU/SEI-92-TR-12

Goodrich and Olfman evaluated requirements analysis methods based on the factors of Re-
quirements, Commitment, and Understanding [Goodrich 90]. Requirements focused on com-
pleteness, accuracy, and relevance. Commitment referred to communication, expectations,
involvement, and level of control over specifying requirements. Understanding concerned pre-
dictions about the system and the degree of understanding of the task and process. They con-
cluded that “we believe that all three factors must be present in varying degrees for analysis
phase success” [Goodrich 90, p. 203].

Requirements analysis methods can also be evaluated from the viewpoint of the whole devel-
opment process. Six criteria that can be used to judge the success of a requirements engi-
neering methodology in this fashion are given as follows [Macaulay 90]:

* design philosophy, e.g., it should create modifiable design solutions and be
iterative in nature .

¢ fitting, i.e., the methodology should fit with the current design practice, e.g.,
by supporting established design concepts; one useful way to establish
requirements is through prototyping

¢ user orientation, i.e., the methodology should be acceptable to designers and
should support and encourage multidisciplinary views, supporting confiict
resolution

* support for project management, e.g., cost estimation, planning, scheduling,
and productivity increases brought about perhaps through the use of
automated tools

* quality assurance, i.e., ensuring that the specified requirements are pursued
through the development process and can be traced back

* modeling, with the model exhibiting characteristics of users' views, human
readability, precision, specification completeness, and mapping to later
phases

This section has pointed out some of the problems with evaluations of methodologies, as well
as some of the evaluation strategies that have been employed in spite of these problems. Hard

evidence to support the use of one methodology over another will always be difficult, if not im-
possible, to produce [Checkland 89b, p. 118]:

Since the same human situation cannot be investigated twice, methodology is
undecidable: ‘successes’ might have been greater with some other approach,
and ‘ailures’ might be due to incompetence using the methodology rather than
the methodology itself.

CMU/SE!-92-TR-12 41

42

CMU/SEI92-TR-12

6 Conclusions

Requirements elicitation is a collaborative decision-making activity involving users, develop-
ers, and customers. The elicitation approach is dependent not only on the diversity and expe-
rience levels of these cross-disciplinary sources of requirements, but also the diversity of the
problem being formulated, which ranges from a fully understood system to a new, novel one.
Any single approach to requirements elicitation will have varying success across different
projects, since “not all problems yield to the same degree to the same approach” [Cameron
89, p. 2/1). For example, the development of a system with a simple problem domain may not
be affected significantly by the use or avoidance of the JSD model. It therefore has been pro-
posed in this paper that the requirements elicitation approach to use for a given project be tai-
lored to that project.

Benyon and Skidmore summarize the problems with using one specific elicitation strategy’
[Benyon 87, p. 7]:

We feel that it is unlikely (if not impossible) that a single methodology could
prascribe how to tackle the great variety of tasks and situations encountered by
the systems analyst...The desire to produce ‘one best way' is leading to
elaborate and bureaucratic methodologies.

As an alternative, the strategy presented in this paper advocates the synthesis of multiple
techniques into an elicitation approach that can be instantiated to address the attributes of a
given target system. These attributes include:

® social constraints, e.g., what groups are involved and what are their
backgrounds

e architectural constraints, e.g., what must this system interface with
¢ organizational constraints, e.g., time, cost, and personnel factors

* problem-specific factors, e.g., domain maturity and the availability of
standards

The elicitation methodology proposed in this paper will address the problems listed in earlier

sections and focus on achieving the properties of a good specification, and this will be accom-
plished by integrating flexibility into the methodology, as noted in [Macaulay 90, p. 101]:

There is a danger in being ‘technique-oriented,’ so that the problem situation
will be distorted to fit the technique. We need rather to be problem- and user-
oriented and to allow the situation to distort the way in which the analysis is
carried out. This orientation demands flexibility in the approach, and hence the
emphasis here is on methodology and not on technique.

!- The authors use “methodology” in the way “method” was defined in Section 5.2, rather than how methodology
was defined in that same section.

CMU/SEI-92-TR-12 43

There are a number of elicitation techniques useful for addressing one or more of the problems
discussed in Section 3. However, no single technique acequately addresses all of the elicita-
tion problem areas. The methodology proposed in Section 5.3 integrates various elicitation
techniques to incorporate their advantages, while comprehensively addressing the full range
of elicitation issues.

44 CMU/SEI-92-TR-12

Appendix A Notes on Selected Elicitation Methods
and Techniques

During the course of this paper, a number of elicitation techniques, methods, and strategies
were introduced and often summarized as to their good points and deficiencies. A few of those
techniques and methods are discussed further in this appendix.

A.1 Notes on IBIS

IBIS, an acronym for Issue-Based Information System, is a structuring method which allows
the rationale underlying requirements to be organized and tracked [Conklin 88}, [Yakemovic
90]. The IBIS method is used to capture dialogue information by keeping track of the issues
being discussed, the positions on these issues, and the arguments in support of or objecting
to positions.

IBIS has a number of advantages. First, it is a technique which is easy to leam and use. An
indented text system was used in an early implementation of a tool for IBIS, and it was well
accepted because the users were already familiar with the components (personal computers
and text editors) used for the tool [Yakemovic 90].

IBIS results in consistency in the quality of the notes being taken. Also, the “important” infor-
mation tends to be captured because of the structure imposed on meetings by the IBIS meth-
od. Thus IBIS results in more productive meetings. For example, open issues are saved and
returned to later, reducing incompleteness. As another example, when tangents are brought
up, they are stopped sooner and the interrupted issue, position, or argument returned to more
quickly. The issue-position-argument framework helps focus thinking on the difficult, critical
parts of the problem, and improve detection of incomplete or inconsistent thinking. Also, it
tends to make assumptions and definitions more explicit sooner.

IBIS provides a cushion for the human resources problem mentioned in the SEI requirements
analysis workshop [SEI 91]. If a person who has been critically involved in the definition of a
component of a system suddenly leaves for another job, the rationale no longer is lost. Instead,
the reasons why the component's requirements are stated as they are can be accessed within
the IBIS framework. Rationale is no longer lost with employee tumover.

IBIS is a non-intrusive technique. A tool that changes the way people normally work may be
viewed as intrusive or worse, and result in a decline in communication effectiveness [Yake-
movic 90, p. 116]. Because IBIS is easy to understand and implement, it does not adversely
affect the way meetings are carried out, and hence it supports the unobtrusive recording of
important requirements information as it is communicated.

IBIS has a number of shortcomings as well, which are reported with welcome openness and
honesty in [Yakemovic 90}, [Conklin 88], and [Conklin 91]. A few of these problems are not
specific to IBIS, but apply to 2!l requirements elicitation documentation methods. For example,

CMU/SEI-92-TR-12 45

itis noted that IBIS is vulnerable to “scheduling pressure”, whereby all forms of documentation
are abandoned in favor of getting code written [Yakemovic 90]. This can be stated against any
form of requirements documentation.

IBIS does not support automated checking of attributes like consistency because there are not
enough formalisms used in the method. The problem with extending IBIS to include more for-
malisms, though, is that more comprehensive techniques may not get used because of their
increased complexity.

IBIS has no support for types outside of issues, positions, and arguments. Other types, such
as goals and requirements, would be very useful for requirements elicitation, particularly if IBIS
is used in conjunction with another methodology such as CORE. In addition, there is no sup-
port in IBIS for resolving issues and reaching consensus, i.e., for choosing among the various
positions of an issue. All IBIS does is document the different positions. Some of these criti-
cisms are addressed in [Ramesh 91], where the IBIS model is extended to provide primitives
which do relate the argumentation process to the ramifications of the decisions made during
that process. These extensions include decisions (which resolve issues), constraints which
are generated by making decisions and which affect the design solution, and design objects,
which when synthesized form the complete solution. Another solution would be to integrate
IBIS with JAD. IBIS is well suited for documenting ideas, while JAD provides support for idea
generation and group consensus.

IBIS does not have embedded support for the evolution of the issues-positions-arguments hi-
erarchy. There is no easy way to identify which positions are old and perhaps superseded by
newer positions, or which issues are visited the most frequently on traversals through the hi-
erarchy. Since requirements are known to undergo iterative refinement, ideally a method for
requirements elicitation would support this evolution.

Text-only tools for IBIS do not organize information well, particularly for larger projects. Track-
ing the issues-positions-arguments framework with text documents results in an unmanage-
able amount of data scattered across many files. When text-only tools were employed in this
way, once the framework grew to a sufficient size users stopped updating the electronic ver-
sions of the files, because finding the relevant information became increasingly difficuit. For
this reason, the text-only tools were replaced by a graphically oriented hypertext tool called
gIBIS. Such a tool had its own problems, listed below.

In order to be built with fewer resources, g|BIS was implemented on top of an existing relation-
al database management system. As a result, though, gIBIS is a closed system. Nodes rep-
resenting issues, positions, and arguments within IBIS cannot be linked adequately to material
which is not a node. For example, a diagram of the evolving design cannot be linked to the
issue from which that diagram was derived. Likewise, a prototype used to decide between two
positions cannot be linked to those two positions. Such links would promote traceability.

46 CMU/SEI-92-TR-12

The gIBIS hypertext tool forced ideas to be expressed in a fine-grained separated manner,
which obscures the larger ideas being developed by the author [Conklin 88, p. 327]. Under-
standing the individual issues, positions, and arguments without the benefit of a larger context
is difficult for the parties involved in requirements elicitation.

Some general hypertext research issues apply to gIBIS, i.e., hypertext support for IBIS, as
well. For example, an open question is how a large body of information is best represented for
ease of navigation. It is difficult for some users of gIBIS to traverse through a large number of
nodes, and hence these users will not create frameworks that exceed the number of nodes
with which they can comfortably examine.

A final disadvantage to capturing requirements rationale with IBIS is that it is difficult to orga-
nize the rationale and access a particular piece when needed [Yakemovic 90]. Therefore one
of the key inhibitors to the use of IBIS is the need for better information organization, a point
that was aiso brought up during the SE! requirements workshop [SEI 91].

A.2 Notes on the Use of Domain Models

Domain analysis is defined as the definition of features and capabilities common to systems
in advance of software development, and is noted as providing a means of communication and
a common understanding of the domain [Kang 90, p. 2]. As such domain analysis is of para-
mount importance in requirements elicitation, where those that understand the problem do-
main converse with those who need to understand it in order to capture the requirements
effectively. The cited report on feature-oriented domain analysis (FODA) continues that the re-
quirements analyst uses the products of domain analysis when implementing a new system
[Kang 90, p. 5]). Therefore, FODA does have applicability to requirements elicitation, and will
be overviewed in this section.

All requirements originate with the end-users and/or the buyers, i.e., decision-makers, of a
system. These requirements are transcribed by a requirements analyst, and must be under-
standable and usable by the system designers. A useful requirements elicitation methodology
addresses these communicative issues. In addition, a frame of reference is needed on which
to base communication between the requirements analyst and the end-users and/or buyers.
This is provided via domain knowledge captured from domain experts, existing systems, and
literature conceming the domain. In order to be useful, such domain knowledge needs to be
organized, and this organization shall be referred to as a domain model.

Domain information comes from textbooks, standards, existing applications, and domain ex-
perts [Kang 90, p. 26). Depending on the domain analysis technique employed, more than one
type of model could be generated from this information. For example, with FODA both an entity
relationship model and features model are created. The entity relationship model is particularly
useful for educating the requirements analyst about the domain, and the features model is par-
ticularly useful for communicating to the end user the issues and decisions involved in creating
requirements for a system in this domain. Regardiess of the number of component models

CMU/SEI-92-TR-12 47

within the domain model, the domain model itself is likely to have issues which need to be re-
solved in order to specify an application within the domain. “Issues” are the descriptions of
points within the domain model where alternative selections can be made. “Decisions” are de-
scriptions of these alternative selections for issues, along with the rationale behind why this
selection would be made over the others within this domain. The use of a domain model which
identifies such issues and decisions for all alternative points would be extremely useful toward
structuring requirements elicitation techniques in that domain.

Through the use of a domain model, the requirements analyst would interview end-users and
buyers to both validate the domain model's appropriateness for this particular context, and to
resolve the issues present within the model. This process is iterative in nature, i.e., through
interviews with end-users it may become obvious that possible alternatives and corresponding
issues and decisions exist at a point in the domain model where none had been previously
noted. By returning back to the sources of domain knowledge, the analyst can verify the pre-
scribed changes, and the domain mode! can be updated accordingly.

As the domain model evolves, so will its usefulness for gathering requirements for future ap-
plications within the domain. The economic justification for using a domain model during re-
quirements elicitation are thus twofold. First, the application under development will be of a
better quality and can be developed at a reduced cost because with a domain model, the is-
sues and decisions that need to be made during the requirements phase will be clearly stated.
Second, the reuse of prior domain analysis work will lead to reduced costs for future develop-
ments in the area.

The domain model serves three other main purposes besides structuring the communication
between the end-users/buyers and requirements analyst. It defines the domain terminology for
all parties to reduce communication ambiguity. It simplifies requirements conflict detection be-
tween different end-users/buyers by identifying issue points where such conflicts can arise. It
also promotes requirements conflict resolution by providing the rationale behind the decisions
which can be made at issue points.

The detection of conflicts is simplified by the identification of conflict-producing areas within
the domain model, i.e., issues. The resolution of the conflicts is initiated by the analyst after
retrieving all issues where two or more end-users or buyers gave inconsistent decisions. By
using a domain model to structure the elicitation process, the requirements analyst will be kept
at the domain, i.e., problem, level and not drop into the software design level.

There are a few disadvantages to the use of domain modeling techniques in requirements elic-
itation. The domain may not be mature enough to enable the development of a domain model
sufficiently rich to improve the elicitation process. Even in mature domains, a domain model
may not be readily available. In those cases, the development of a domain model may be
viewed as too costly in terms of time or effort, especially if no further work in that domain is
being planned. Finally, in cases where a domain model is available and is used as an aid to
elicitation, the domain model potentially could be a limiting factor in the development of com-
plete requirements. The system being elicited may only be an improper subset of the domain

48 CMU/SEI-92-TR-12

covered by the domain model, with some of the system extending beyond the scope of the
domain model. Users, developers, and the requirements analyst may be biased toward stay-
ing within the framework provided by the domain model, even if a certain need is better satis-
fied through an extension to the domain model.

The following paragraphs address how elicitation structured by a domain model exhibits the
six traits of an ideal problem analysis technique outlined by Davis [Davis 90]:

1. Facllitates communication. By using a domain model, communication can
be performed in a structured manner. The use of a domain terminology dic-
tionary can clarify ambiguities. The use of issues and decisions can explain
trade-offs to be made in specifying an application within a domain.

2. Provides a means of defining the system boundary. The domain model
defines the boundary of a particular domain. For example, with FODA the
context model is used for this purpose. If it can be verified that the system
being elicited is a proper subset of the given domain, then the system
boundary will be within this domain boundary. The boundary-setting
procedures of the domain model can also be used to define the system
boundary, which will likely be more restrictive.

3. Provides a means of defining partitions, abstractions, and projections.
Different domain modeling techniques support one or more of these methods
for structuring the domain. For example, the features model supports
partitioning and abstraction. The domain model is the means by which the
elicitation methodology supports these organizational approaches.

4. Encourages analyst to think and document at the problem level, not the
software level. Again, the domain model should be of sufficiently broad
scope so as to avoid software design issues, and the use of the domain
model to structure elicitation will therefore keep the analyst at the problem
level.

S. Allows for opposing alternatives but alert the analyst to thelr presence.
The elicitation methodology could retain all the information gathered from
different sources, including conflicts between two or more interviews. The use
of “issues” marks the areas where conflicts may occur, easing the task of
conflict identification.

6. Makes it easy for the analyst to modify the knowledge structure. As the
problem is explored the original domain model used to structure this
exploration may need to be modified in light of new information. The process
of building the domain model and using that model to elicit requirements is
iterative in nature. Therefore, the elicitation methodology realizes the need for
modifying the knowledge structure, as applied to both the domain model and
the preliminary requirements template. The intuitiveness of the domain model
addresses ease of use. However, tool support is another important factor in
determining how easy a technique is to use.

CMU/SEI-92-TR-12 49

A.3 Notes on JAD

JAD is an acronym for Joint Application Design, a registered trademark of IBM Corporation
[Wood 89}. JAD's main theme is to bring together representatives with management authority
and accountability into a structured workshop to foster timely decision-making. JAD consists
of five phases [Wood 89]:

project definition

research

preparation for the JAD session

O b~

the JAD session
5. the final document

Wood and Silver present a detailed description of these JAD phases in their book [Wood 89).
This book deals primarily with online transaction-based systems, especially those targeted for
mainframes. There is an emphasis in the examples on data elements, screen flow, and screen
design which does not apply equally to real-time systems, leading one to question whether this
is a shortcoming of the book or whether JAD does not apply well to real-time systems.

The project definition and research phases of the JAD process deal with fact-finding and infor-
mation gathering, two elicitation tasks mentioned earlier in the body of this report. Techniques
which support these tasks, such as CORE, could likewise be used to improve the project def-
inition and research done in preparation for a JAD session. The information gathered during
the early phases of JAD is emphasized as what could work, not what “will be the way” of doing
things [Wood 89, p. 101]. The JAD session is then used to validate the information gathered
in the previous phases. The JAD process concentrates on this JAD session itself, and thus
JAD contributes to requirements elicitation as primarily a means to validate information al-
ready gathered.

The make-up of the JAD team is crucial to the JAD session’s success. The right people have
to be involved, and the presence of a skilled facilitator can keep the session focused and can
minimize unproductive emotional attacks and defenses. Having the right people involived al-
lows decisions to be made quickly. The JAD session is also used to establish shared owner-
ship in the final document (specification) among all the important stakeholders who should be
present at the session. JAD provides “a concentrated workshop for making decisions with ev-
eryone present to make those decisions” [Wood 89, p. 147].

A JAD session can be costly, however, in terms of people and time. A JAD session may con-
tain 18 to 25 people [Wood 89]. The JAD session is capable of producing agreement on “3
screens per half day session” [Wood 89, p. 111], which hints that a JAD session for a complex,
real-time system may span many days.

50 CMU/SEI-92-TR-12

Techniques and tools can improve the efficiency of the JAD session. For example, decision-
making can be assisted through the use of structured techniques such as the Kepner-Tregoe
weighted sums approach [Wood 89, p. 154). Magnetics can be used for visualizing data ele-
ments, screen flow, and screen design. The use of prototyping for screen design is also men-
tioned by Wood and Silver as a communication mechanism, although the only prescriptive
advice on using this prototyping technique is “don’t spend too much effort here” since the de-
sign is only proposed, not finalized [Wood 89, p. 110].

While tools and techniques are useful in supporting JAD, Wood and Silver focused primarily
on the JAD process, explicitly stating “first the methodology, then the tools” [Wood 89, p. 179].
The reader is left to speculate on how techniques and tools can further improve the JAD vali-
dation process. One example would be the treatment of issues raised during the JAD session.
Using a technique such as IBIS would allow these issues to be documented with positions and
arguments, fostering better consistency checking and providing a means for tracking rationale.

A.4 Notes on CORE

CORE, an acronym for COntrolled Requirements Expression, is a requirements analysis and
specification method that was developed in 1979 and refined during the early 1980s [SDS 85].
It has not been used very much in practice in the U.S., despite being featured, or at least men-
tioned, in many research papers dealing with requirements elicitation, e.g., [Mullery 79}, [Potts
91), [Kean 91]. Rome Air Development Center's (now Rome Laboratory’s) work on the Re-
quirements Engineering Environment (REE) includes the CORE method.

CORE can be considered as a paradigm in which the requirements specification is created by
both the customer and the developer, not one or the other. It is based on the principle of first
defining the problem to be analyzed, breaking it down into viewpoints to be considered, and
gathering and documenting information about each viewpoint. This data is then further ana-
lyzed and structured, an enhanced graphical representation of the data for each viewpoint is
created, and then the viewpoints are examined in combination rather than in isolation. The last
phase of the method deals with constraints analysis, in which nonfunctional requirements such
as cost and time windows are identified and the earlier phases are reviewed with respect to
these nonfunctional requirements. For a complete description of the CORE method, consult
the documentation from Systems Designers Scientific [SDS 85].

Some of the advantages of CORE are that it is a thoroughly documented method complete
with a set of prescriptive guidelines on how to apply the method to a problem [SDS 85]. The
method is a general purpose, flexible approach to requirements elicitation, allowing it to be ap-
plied to a broad class of problems (although, as will be discussed shortly, it does apply better
to the earlier phases of development such as concept exploration rather than later phases
such as detailed design).

CMU/SEI-92-TR-12 51

CORE recognizes that requirements elicitation involves contributions from a number of differ-
ent communities, a major point from the recent SEI requirements analysis workshop [SEI 91].
CORE defines the responsibilities of the members of these communities, e.g., Viewpoint Au-
thorities, and structures the communication between these groups.

CORE has some known disadvantages. First, the role of the requirements analyst in CORE
seems too passive. The assumptions are that the users will propose solutions and the analyst
will make sense of them, and that the customer authority and not the analyst will resolve con-
flicting views of the proposed system. The analyst is not likely to be able to take such a passive
role and end up with a coherent system requirements specification.

Second, the steps of the method are not very precise. Some concepts in CORE are not well
defined, and the use of information gathered during certain phases of CORE is unclear.

Third, CORE is deficient in representing constraints, e.g., conditions under which an action is
performed. It is also deficient in representing real-time requirements.

CORE does not provide any modeling primitives to support the expression of internal func-
tions, e.g., with CORE you cannot decompose actions into subactions.

Finally, CORE does not provide the framework for storing the rationale behind the require-
ments with the requirements themselves. The rationale for any given viewpoint can be as-
sumed to rest with the Viewpoint Authority, but as was pointed out in the SEI requirements
workshop this individual or set of people is likely to change over time [SEI 91]. Therefore itis
worthwhile to document the rationale for the requirements and to store such rationaie with the
requirements.

A.5 Notes on QFD

The term “quality” is defined in Japan Standard Z8101-1981 as “a system of means to eco-
nomically produce goods or services which satisfy customer requirements " Quality Function
Deployment (QFD) is “an overall concept that provides a means of translating customer re-
quirements into the appropriate technical requirements for each stage of product development
and production” [AS| 86, p. 11-39). The initial steps of QFD can be described as being “simply
a system of identifying and prioritizing customer needs obtained from every available source”
[AS! 86, p. VII-6]). QFD is a concept which applies well to requirements elicitation, especially
to an elicitation model where the customer’s voice is the driving force behind requirements cre-
ation. This section will first present a very brief overview of the QFD methodology, and then
explore further the advantages and disadvantages of QFD, especially when applied to require-
ments elicitation. As QFD has been applied successfully to automobile manufacturing, and
given that most readers are familiar with automobiles, examples of QFD applied to automobile
manufacturing will be used to clarify points made in this section.

52 CMU/SEI-92-TR-12

The traditional process model involved in automobile manufacturing was to start with the cus-
tomer requirements, and through a product development process derive the product. QFD re-
fines this process model into the following:

1. Start with the customer requirements.
2. Transform these requirements into design requirements.

3. Successively transform design requirements into part characteristics, then
manufacturing operations, and finally production requirements.

Since the first few transformations are those which are most applicable to the requirements
elicitation phase, the focus of these notes will be on the early planning phase the QFD meth-

odology.

The planning phase of QFD can be decomposed into nine steps:

1. Identify the customers, the product or service under design, and the develop-
ment time horizon.

2. Gather high-level customer requirements and refine each requirement into a
set of actionable items. Requirements are expressions of what the system
does which is perceptible and has value to customers. Sources of these
requirements for automobile manufacturing include marketing research,
dealer input, sales department wants, magazines, and surveys. Examples of
customer requirements from the automobile domain include “easy to repair,”
“easy to service,” “easy to close door,” and “easy to clean.”

3. Gather final product contro! characteristics that should be assured to meet
customer requirements. These control characteristics are chosen by the
designers to satisfy customer requirements. Examples from the automobile
domain include wall thickness on doors, door lock location, door lock size,
and door frame width. A correlation matrix can also be developed for these
characteristics to show which characteristics are in conflict with one another.

4. Develop relationship matrix (strongly related, related, weakly related)
between customer requirements and product control characteristics.

5. Add market evaluation (customer importance ratings and competitive
evaluations).

6. Compute final product control characteristic competitive evaluation for each
control characteristic. Then compare these control characteristic competitive
evaluations to market competitive evaluations to determine any
inconsistencies.

7. List the key selling points of the product.

8. Develop target values for each of the final product control characteristics
based on the key selling points, customer importance ratings, and current
product strengths and weaknesses.

CMU/SEI-92-TR-12 53

9. Finalize selection of the product control characteristics to deploy through the

The QFD documents produced later in the process, including the Deployment Matrix, Process
Plan and Control Chart, and Operating Instructions, will not be presented here since they apply
less directly to requirements elicitation. These planning phase steps enumerated above, how-
ever, are analogous to many of the activities performed during requirements elicitation. Re-
quirements elicitation can be presented as involving the following steps in order to clarify the

remainder of the process (from planning through to production), dependent
on the information used to develop target values as well as the feasibility of
achieving the target values for those characteristics.

potential relationship with the QFD method:

1.

Identify the communities affected by the proposed system, e.g., customers,
users, and developers. Also identify any initial constraints identified by the
customer which affect requirements development.

Gather high-level requirements from the customer. Ideally this procedure is
done in a structured manner, perhaps by first breaking the problem down into
different viewpoints (via CORE method), and then gathering the requirements
and decomposing them via the IBIS technique.

Derive and gather a number of potential system architecture features that
need to exist in order to meet the customer requirements.

Develop the relationship matrix between the customer requirements and
system architecture features.

Add the prioritization, i.e., customer importance ratings, of each of the
customer requirements. Also, for commercial products, perform a competitive
evaluation of systems meeting the customer’s needs.

Compute final system architecture feature competitive evaluation for each
architecture feature. Then compare these feature evaluations with the market
competitive evaluations to determine any inconsistencies.

7. List the key customer requirements, i.e., the key “selling points.”

8. Develop a target value for each of the final system architecture features.

9. Define a system architecture to use based on the key customer requirements,

A more careful examination of the relationship between QFD and requirements elicitation may
reveal that QFD is ideal for defining the system architecture requirements, as hinted at here.

For more details on QFD, consult the various papers and presentations collected in [AS| 86).

customer importance ratings, current systems’ capabilities, and the feasibility
of achieving the target values computed in the previous step.

Another reference on QFD is [Akao 90].

Some goals of QFD which are similar to the goals presented for requirements elicitation at the

requirements engineering workshop sponsored by the SEI [SE! 91] are:

CMU/SEI-92-TR-12

« educate management, especially middie management (with elicitation,
management also needs to be educated on the importance of the elicitation
phase and the benefits of promoting communication during this phase)

e capture the “voice of the customer,” i.e., capture what the customer likes
rather than the problem, allowing design decisions to be traced back to
customer needs (with elicitation, the user community’s views are crucial and
should be captured, possibly through the use of mock-ups and prototypes,
and the rationale behind these views should be saved)

e horizontal deployment, i.e., “group work” rather than “self-promoting”
(communities involved in elicitation should work together to achieve the
common goal of producing quality requirements and sharing ownership in
these requirements)

QFD strengthens the current development process and achieves the desired output efficiently.
It strengthens the development process by:

e defining clear targets early based on market and business demands;
¢ focusing simultaneously on product and process technologies;
e prioritizing the key issues for better resource allocation; and
e enhancing communication and teamwork.
it achieves the desired output efficiently by:

* meeting the customer’s needs with the product; and
¢ providing a product which has a competitive edge.
Advantages of applying QFD to system requirements elicitation include:

¢ emphasizing designing for quality by focusing on the customer’s needs
¢ promoting teambuilding

* improving cross-functional communication

¢ addressing high priority items early

¢ preserving knowledge in the QFD documents (promoting reuse)

¢ reducing cost through decreased start-up problems

¢ shortening product development time (in part by the virtual elimination of late
engineering changes)

* enhancing design reliability
¢ increasing customer satisfaction
Disadvantages of applying QFD to system requirements elicitation include the following:

* More work must be done in the planning stages.

* It is more difficult to change direction once started, since a lot of work has
been expended to follow a given direction and all interrelationships would
have to be revisited and revised upon a change in direction.

CMU/SEI92-TR-12 55

* Many steps in the method outlined for QFD planning are applicable to the
development of a competitive product, e.g., the use of market surveys and
analysis of competitor's products. Some of these steps may not apply to
government sole source contracts.

e The QFD method outlined in the different sections of [AS| 86] does not
indicate the process by which the decomposed customer requirements and
product control characteristics are derived. For example, it does not indicate
how the design of an automobile is broken down into smaller parts, e.g., the
door. Further, it does not specify how the particular product control
characteristics such as “door lock size”, and the particular customer
requirements such as “easy to close door”, are derived. Other methods (e.g.,
CORE) might be used in conjunction with QFD to describe how the
decomposition of the problem space and architecture space should occur
during requirements elicitation.

* The QFD method does not provide stopping conditions on the decomposition
of customer requirements, i.e., the ideal granularity of customer
requirements is not specified.
Despite these disadvantages, it appears upon a cursory reading of the QFD literature that
there are many aspects of QFD which should be incorporated into a proposed methodology
for requirements elicitation.

A.6 Notes on SSM

Both the definition of methodology and the philosophy behind soft systems methodology
(SSM) are given as follows [Checkland 83b, p. 101}:

It is the essence of a methodology—as opposed to a method, or technique—
that it offers a set of guidelines or principles which in any specific instance can
be tailored both to the characteristics of the situation in which it is to be applied
and to the people using the approach: users of SSM have to discover for
themselves ways of using it which they personally find both comfortable and
stimulating. ...Such is the variety of human problem situations that no would-bo
problem solving approach could be reduced to a standard formula and still
manage to engage with the richness of particular situations. Flexibility in use is
characteristic of competent applications of SSM, and the reader should not
look for a handbook formula to be followed every time.

SSMis applicable to “messy, changing, ill-defined problem situations” [Checkland 89a, p. 72).
While classic operations research starts with a carefully defined objective, in most managerial
problems this question is part of the problem, i.e., “there are few human situations in which
getting the logic right is enough to bring about action” [Checkland 89a, p. 77). Thus SSM treats
‘what to do” as part of the problem. Requirements elicitation under SSM should focus not only
on decision-making with respect to finding a solution to a problem, but also on problem formu-
lation as well. Itis a “soft” approach in that it takes into account multiple perspectives, including
effectiveness (the right thing to do), efficacy (it works), and efficiency (minimum use of resourc-
es).

56 CMU/SEI-82-TR-12

SSM is a leaming, and not an optimizing, system. Learning has to be participative, i.e., SSM
is not supposed to be the skill of some external expert [Checkland 89a, p. 98).

The seven phases of SSM are enumerated below. As pointed out earlier, though, SSM is not
a static cookbook and these phases do not need to be progressed through linearly without it-
eration. The phases are as follows:

1. Enter the situation considered problematic. The problem is typically unstruc-
tured.

2. Express the problem situation. These first two steps together consist in
“finding out.”

3. Identify the essential objectives of the problem situation by formulating a root
definition. This root definition contains or implies the six pieces of information
represented by the mnemonic CATWOE: customers, actors, transformation
process, Weltanshauung (world view or outlook), owner, and environmental
constraints.

4. Create conceptual models of one or more systems to meet those objectives.
These models take into account efficiency, efficacy, and effectiveness. Along
with the root definition, these models form the systems thinking about the real
world.

5. Compare the models to reality (expressed in the second steps). If
inadequate, return to the root definition and revise.

6. Define possible changes which are both desirable and feasible.
7. Take action to improve the problem situation.

There are both advantages and disadvantages to SSM's general nature. Potential problems
with the methodology can be argued away by claiming that SSM can be tailored to an organi-
zation's needs to better address any given problems. However, this general framework can be
cited as a limitation because it may fail to offer enough prescriptive guidelines to get started
with the methodology and use it during requirements elicitation.

SSM uses conceptual, idealized models to contrast desired states with actual states. This ap-
proach works fine for the development of a new or novel system. In other elicitation scenarios,
however, such as one where a revision to an existing system is to be built, there is a significant
cost associated with radically redesigning the actual, existing system. Rather than working
from a desired state and attempting to attain it, a possibly more cost-effective and potentially
more appealing approach would be to incorporate constraints from the existing system when
defining the requirements. It is difficult, however, to identify when constraints should be kept
from the existing system, versus when an evolution toward an ideal, desired state should be
pursued regardless of the existing system. More information on SSM is provided in [Checkland
90}.

CMU/SEI-92-TR-12 57

A.7 Other Method-Specific Notes

This section contains disjoint notes concerning various requirements elicitation strategies.
These strategies have not yet been detailed like IBIS in Appendix A.1 and CORE in Appendix
A.4, nor have they been fully analyzed for the advantages and disadvantages they could ofter
if incorporated into a proposed elicitation methodology. This section is useful mainly for iden-

tifying references to other elicitation strategies.

Among the elicitation strategies found in the recent literature which are not the subject of a
separate appendix section in this report are the following:

e Entity-Relationship-Attribute-Event (ERAE) [Dubois 88]

e User Skills Task Match (USTM), a user-centered approach to requirements
expression [Macaulay 90]. USTM is structured into three stages of
description (describing a product opportunity), analysis (identifying a high-
value solution), and decision-making (delivering a business solution). It is a
collection of techniques and methods designed for use by the key
stakeholders in the development of initial requirements for “generic” systems.
Generic systems are defined as those which are designed to satisty the
needs of many different customers or markets.

* Paisley [Zave 82], which views the requirements specification as an
executable model of the proposed system interacting with its environment.
Paisley models a system as a series of asynchronous interacting processes,
but is criticized as being “a textual notation that is difficult to understand”
[Deutsch 88, p. 41]. Paisley specifications are “operational” in that they are
implementation-independent models of how to solve a problem, rather than
just being statements of what properties a solution should have. More recent
papers on Paisley such as [Zave 86] focus more on specification than with
requirements elicitation and analysis, which were given mention in [Zave 82].

¢ Scenario Based Requirements Elicitation (SBRE) [Holbrook 90]. SBRE
features the parallel development of requirements and a high level design,
the use of scenarios to communicate the behavior of a design, and an
evaluation function to assess the suitability of the design. SBRE also
recognizes the importance of an issue base with which to maintain the issues
that arise during the elicitation process, a point well addressed by IBIS and
discussed in Appendix A.1. Scenarios are used to structure the early
interaction between users and designers in order to quickly develop a set of
initial requirements. The author suggests that because scenarios have low
cost and limited expressiveness, they “seem most appropriate for
communicating specific system features in situations of high uncertainty”
[Holbrook 90, p. 97].

e Jackson System Development (JSD) [Cameron 86]. JSD involves
specifications consisting mainly of a distributed network of sequential
processes. It has been used primarily on data-processing applications. The
major criticisms of JSD are that it is a very different “middle-out” approach,
the design is performed in a very fragmented manner, and that it may not
apply well to large systems since there is no hierarchical representation nor
any overall view [Jackson 88). JSD can be used to structure elicitation, but is
often used at a later development stage [Cameron 86, p. 222]:

58 CMU/SEI-92-TR-12

Many projects that have used JSD actually started slightly later in
the life cycle, doing the first steps largely from existing documents
rather than directly with the users.

¢ SCS (Structured Common Sense) [Finkelstein 86]. SCS is an formalized
outgrowth of CORE and contains the following steps:

a. Agent identification (based on CORE’s viewpoint hierarchies)

b. Physical data flow analysis (derived from structured systems
analysis)

c. Action tabulation and description (derived from CORE’'s tabular
collection)

d. ERA analysis
e. Causal tabulation and special case analysis

There were problems in trying to fully evolve SCS from existing methods
[Finkelstein 86, p. 238]:

...no existing method appeared wholly suitable as a basis for
producing a specification in the formal system. For example we
adopt the philosophy of JSD, in which a system specification and
design is build from a model of the envisaged system in its
environment, but the process-oriented structure of the system and
the procedural description of the processes is incompatible with
our formal system. Similarly, the requirements elicitation heuristics
of CORE and the notion of viewpoints and their actions fit very well
into SCS and the formal system, although the subsequent dataflow
representations of CORE do not.

CMU/SEI-92-TR-12 59

60

CMU/SEI-92-TR-12

Bibliography

[AS! 86]

[Congress 90]

[DoD 91]

[IEEE 83]

[IEEE 84]

[IEEE 90]

[SDS 85]

[SE1 91]

[STEP 91]

[Akao 90]

American Supplier Institute. Quality Function Deployment: A Collec-
tion of Presentations and QFD Case Studies. American Supplier in-
stitute, 1986.

U.S. Congressional Subcommittee on Investigations and Oversight.
Bugs in the Program: Problems in Federal Government Computer
Software Daevelopment and Regulation. Technical Report 4/90 Staff
Study, U.S. 101st Congress, Washington, DC, April 1990.

U.S. Department of Defense. Software Technology Plan: Volume Il
Plan of Action (Technical Report Draft 5, 8/15/91), U.S. Department
of Defense, August 1991.

Institute of Electrical and Electronics Engineers. IEEE Standard
Glossary of Software Engineering Terminology. ANSI/IEEE Stan-
dard 729-1983, Institute of Electrical and Electronics Engineers,
New York, 1983.

Institute of Electrical and Electronics Engineers. IEEE Guide to
Software Requirements Specifications. ANSVIEEE Standard 830-
1984, Institute of Electrical and Electronics Engineers, New York,
1984.

Institute of Electrical and Electronics Engineers. IEEE Standard
Glossary of Software Engineering Terminology. |EEE Standard
610.12-1990 (revision and redesignation of IEEE Std. 729-1983),
Institute of Electrical and Electronics Engineers, New York, 1983.

Systems Designers Scientific. CORE: The Method. Systems De-
signers Scientific, Camberley, England, 1985.

Software Engineering Institute Requirements Engineering Project.
Requirements Engineering and Analysis Workshop Proceedings.
Technical Report CMU/SEI-91-TR-30 or ESD-TR-91-30, Software
Engineering Institute, Pittsburgh, PA, December 1991,

Software Test & Evaluation Panel (STEP), Requirements Definition
implementation Team. Operational Requirements for Automated
Capabilities, Draft Pamphiet (Draft PAM), April 23, 1991.

Akao, Yoji. Quality Function Deployment: Integrating Customer Re-
quirements into Product Design. Productivity Press, Cambridge,
MA, 1990.

CMU/SEI-92-TR-12

61

[Andriole 90]

[Ashworth 89]

[Bailin 89]

[Begeman 88]

[Benyon 87]

[Berlin 89]

[Brooks 87]

[Cameron 86]

[Cameron 89]

[Ceri 86)

[Checkland 89a]

[Checkland 89b]

Andriole, Stephen J. Command and Control Information Systems
Engineering: Progress and Prospects. Advances in Computers
31:1-98, 1990.

Ashworth, C. M. Using SSADM to Specify Requirements. In IEE
Colloquiumn on ‘Requirements Capture and Specification for Critical
Systems’ (Digest No. 138), 3/1-3/3. Institution of Electrical Engi-
neers, November 1989.

Bailin, Sidney C. An Object-Oriented Requirements Specification
Method. Communications of the ACM 325).608-623, May 1989.

Begeman, Michael L., and Conklin, Jeff. The Right Tool for the Job.
BYTE 13(10):255-266, October 1988.

Benyon, D., and Skidmore, S. Towards a Tool Kit for the Systems
Analyst. The Computer Journal 30(1):2-7, 1987.

Berlin, Lucy M. User-Centered Application Definition: A Methodolo-
gy and Case Study. Hewlett-Packard Journal 40(5):90-97, October
1989.

Brooks, F.P. Jr. No Silver Bullet: Essence and Accidents of Soft-
ware Engineering. IEEE Computer, 10-19, April 1987.

Cameron, John R. An Overview of JSD. IEEE Transactions on Soft-
ware Engineering SE-12(2).222-240, February 1986.

Cameron, John R. Prototyping Core Functionality Using JSD. in IEE
Colloquium on ‘Requirements Capture and Specification for Critical
Systems’ (Digest No. 138), 2/1-2/2. Institution of Electrical Engi-
neers, November 1989.

Ceri, Stefano. Requirements Collection and Analysis in Information
System Design. In Proceedings of the IFIP 10th World Computer
Congress, 205-214. IFIP World Computer Congress (10th: Dublin,
Ireland), New York: North-Holland, September 1986.

Checkland, Peter. Soft Systems Methodology. Rational Analysis for
a Problematic World. New York: John Wiley & Sons, 71-100, Chap-
ter 4, 1989.

Checkland, Peter. An Application of Soft Systems Methodology.
Rational Analysis for a Problematic Worid. New York: John Wiley &
Sons, 101-119, Chapter 5, 1989.

62

CMU/SEI-92-TR-12

[Checkiand 90]

[Colbert 89]

[Conklin 88]

[Conklin 91)

[Cordes 89]

[Davis 90}

[Delugach 91]

[Deutsch 88]

[Dobson 91)

[Dobson 92]

[Dubois 88])

[Fickas 88]

Checkland, Peter & Scholes, Jim. Soft Systems Methodology in Ac-
tion. New York: John Wiley & Sons, 1990.

Colbert, Edward. The Object-Oriented Software Development
Method: A Practical Approach to Object-Oriented Development. In
TRI-Ada '89 Proceedings, 400-415. ACM/SIGAda, October 1989.

Conklin, Jeff, and Begeman, Michael L. gIBIS: A Hypertext Tool for
Exploratory Policy Discussion. ACM Transactions on Office Infor-
mation Systems 6(4):303-331, October 1988.

Conklin, Jeff, and Yakemovic, K.C. Burgess. A Process-Oriented
Approach to Design Rationale. Human-Computer Interac-
tion6(3/4)357-391, 1991.

Cordes, D.W., and Carver, D.L. Evaluation Method for User Re-
quirements Documents. Information and Software Technology
31(4):181-188, May 1989.

Davis, Alan M. Software Requirements: Analysis and Specification.
Prentice Hall: Englewood Cliffs, NJ, 1990.

Delugach, Harry S. A Multiple Viewed Approach to Software Re-
quirements. Ph.D. thesis, University of Virginia, 1991.

Deutsch, Michael S. Focusing Real-Time Systems Analysis on User
Operations. /EEE Software 5(5):39-50, September 1988.

Dobson, J.E., Martin, M.J., Olphert, C.W., and Powrie, S.E. Deter-
mining Requirements for CSCW: the ORDIT Approach. IFIP Con-
ference on Collaborative Work, Social Communications and Infor-
mation Systems (COSCIS91). 333-35. Elsevier Science Publishers
B.V. (North-Holland), 1991.

Dobson, J.E., Blyth, A.J.C., Chudge, J., and Strens, M.R. The OR-
DIT Approach to Requirements Identification. Proceedings of the
Sixteenth Annual International Computer Software & Applications
Confarence. IEEE Computer Society, September 1992.

Dubois, E., Hagelstein, J., and Rifaut, A. Formal Requirements En-
gineering with ERAE. Philips Journal of Research 43(3/4): 393-414,
1988.

Fickas, Stephen, and Nagarajan, P. Critiquing Software Specifica-
tions. IEEE Software 5:37-47, November 1988.

CMU/SEI-92-TR-12

[Finkelstein 86] Finkelstein, Anthony, and Potts, Colin. Structured Common Sense:
The Elicitation and Formalization of System Requirements. Soft-
ware Engineering 86. London: Peter Peregrinus, Chapter 16, 1986.

[Finkelstein 88] Finkelstein, A. Re-Use of Formatted Requirements Specifications.
Software Engineering Journal 3(5):186-197, September 1988.

[Fowler 90] Fowler, C.J.H., Kirby, M.A.R., and Macaulay, L.A. Historical Analy-
sis: A Method for Evaluating Requirements Capture Methodologies.
Interacting with Computers 2(2):190-204, August 1990.

[Goodrich 90] Goodrich, Victoria, and Olfman, Lorne. An Experimental Evaluation
of Task and Methodology Variables for Requirements Definition
Phase Success. In Bruce D. Shriver (editor), Proceedings of the
Twenty-Third Annual Hawaii International Conference on System
Sciences, 201-209. IEEE Computer Society, January 1990.

[Hackathorn 88] Hackathorn, R.D., and Karimi, J. A Framework for Comparing Infor-
mation Engineering Methods. Management Information Systems
Quarterly 12(2):203-220, June 1988.

[Holbrook 90] Holbrook, Capt. Hilliard Ill. A Scenario-Based Methodology for Con-
ducting Requirements Elicitation. ACM SIGSOFT Software Engi-
neering Notes 15(1):95-104, January 1990.

[Jackson 88] Jackson, Ken. Providing for the Missing Steps. UNIX Review
6(11):55-63, November 1988.

[Jokela 90] Jokela, Timo, and Lindberg, Kai. Statecharts Based Requirements
Analysis: Deriving User Oriented Models. Microprocessing and Mi-
croprogramming 30(1-5):289-296, August 1990.

[Jordan 89] Jordan, Pamela W., Keller, Karl S., Tucker, Richard W., and Vogel,
David. Software Storming: Combining Rapid Prototyping and
Knowledge Engineering. IEEE Computer, 39-48, May 1989.

[Kang 90] Kang, Kyo C., Cohen, Sholom G., Hess, James A., Novak, William
E., and Peterson, A. Spencer. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21,
ADA235785, Software Engineering Institute, Pittsburgh, PA, No-
vember 1990.

[Kean 91] Kean, Elizabeth S. An Informal Approach to Developing an Environ-
ment for Requirements Capture and Refinement. In Proceedings of
the Requirements Engineering and Analysis Workshop Held 3/91

64 CMU/SEI-92-TR-12

[Kramer 87]

[Kramer 88]

[Lavi 88]

[Leite 87

[Loucopoulos 89)

[Macaulay 90]

[Mays 85]

[McDermid 89]

[Milsom 89]

(CMU/SEI-91-TR-30). Software Engineering Institute, December
1991.

Kramer, Jeff, Ng, Keng, Potts, Colin, and Whitehead, Ken. Tool
Support for Requirements Analysis. Research Report DoC 87/3,
Imperial College of Science and Technology, London, March 1987.

Kramer, J., Ng, K., Potts, C., and Whitehead, K. Tool Support for
Requirements Analysis. Software Engineering Journal 3(3):86-96,

May 1988.

Lavi, J.Z., and Winokur, M. Embedded Computer Systems: Re-
quirements Analysis and Specification—An Industrial Course. In
Ford, G.A. (editor), Proceedings of the 1988 SEI Software Engi-
neering Education Conference, 81-105. Software Engineering Insti-
tute, Springer-Verlag, April 1988.

Leite, Julio Cesar S P. A Survey on Requirements Analysis. Ad-
vanced Software Engineering Project Technical Report RTP-071,
University of Califomnia at Irvine, Department of Information and
Computer Science, June 1987.

Loucopoulos, P., and Champion, R.E.M. Knowledge-Based Sup-
port for Requirements Engineering. information and Software Tech-
nology 31(3):123-135, April 1989.

Macaulay, Linda, Fowler, Chris, Kirby, Mark, and Hutt, Andrew.
USTM: A New Approach to Requirements Specification. Interacting
with Computers 2(1):92-118, April 1990.

Mays, R.G., Orzech, L.S., Ciarfella, W.A., & Phillips, R.W. PDM: A
requirements Methodology for Software System Enhancements.
IBM Systems Journal 24(2):134-149, 1985.

McDermid, J. A. Requirements Analysis: Problems and the
STARTS Approach. In IEE Colloquium on ‘Requirements Capture
and Specification for Critical Systems' (Digest No. 138), 4/1-4/4. In-
stitution of Electrical Engineers, November 1989.

Milsom, F.D. Using CORE with SDL to Specify Requirements. In
Proceedings of the Seventh International Conference on Software
Engineering for Telecommunication Switching Systems: SETSS 89
(Conf. Publ. No. 306), 137-141. Institution of Electrical Engineers
(IEE), London, 1989.

CMU/SEI-92-TR-12

[Mittermeir 90]

[Mullery 79]

[Mullery 89]

[Mumford 81]

[Nosek 88]

[Potts 91]

[Ramesh 91]

[Rzepka 89]

[Sage 90]

[Schouwen 90]

Mittermeir, Roland T., Roussopoulos, Nicholas, Yeh, Raymond T.,
and Ng, Peter A. An Integrated Approach to Requirements Analy-
sis. Modern Software Engineering: Foundations and Current Per-
spectives. New York: Van Nostrand Reinhold, 119-164, Chapter 5,
1990. :

Mullery, G.P. CORE: A Method for Controlled Requirements Spec-
ification. In Proceedings of the 4th International Conference on Soft-
ware Engineering, 126-135. IEEE Computer Society Press, 1979.

Mullery, G.P. Method Engineering: Methods via Methodology. In
IEE Colloquium on ‘Requirements Capture and Specification for
Critical Systems’ (Digest No. 138), 1/1-1/3. Institution of Electrical
Engineers, November 1989.

Mumford, E. Participative Systems Design: Structure and Method.
Systems, Objectives, Selections 1(1): 5-19, 1981.

Nosek, John T., and Schwartz, Ruth B. User Validation of Informa-
tion System Requirements: Some Empirical Results. /EEE Transac-
tions on Software Engineering 14(9):1372-1375, September 1988.

Potts, Colin. Seven (Plus or Minus Two) Challenges for Require-
ments Analysis Research. In Proceedings of the Requirements En-
gineering and Analysis Workshop Held 3/91 (CMU/SEI-91-TR-30).
Software Engineering Institute, December 1991.

Ramesh, B. & Dhar, V. Representation and Maintenance of Pro-
cess Knowledge for Large Scale Systems Development. in Pro-
ceedings of the Sixth Annual Knowledge-Based Software Engineer-
ing Conference, 288-299. Rome Laboratory, Griffiss AFB, NY, Sep-
tember 1991.

Rzepka, William E. A Requirements Engineering Testbed: Concept,
Status, and First Results. In Bruce D. Shriver (editor), Proceedings
of the Twenty-Second Annual Hawaii International Conference on
System Sciences, 339-347. IEEE Computer Society, 1989.

Sage, Andrew P., and Palmer, James D. Software Systems Engi-
neering. New York: John Wiley & Sons, 1990.

van Schouwen, A. John. The A-7 Requirements Model: Re-Exami-
nation for Real-Time Systems and an Application to Monitoring Sys-
tems. Technical Report 90-276, Queen's University, May 1990.

66

CMU/SEI-92-TR-12

[Schubert 89]

[Southwell 87]

[Stair 91]

[Stephens 85]

[Weinberg 88]

[Winokur 90]

[Wood 89]

[Yakemovic 90}

[Zahniser 90]

[Zave 82)

Schubert, M.A. Quality Function Deployment: ‘A Comprehensive
Tool for Planning and Development.’ In Proceedings of the IEEE
1989 National Aerospace and Electronics Conference NAECON
1989 (Cat. No. 89CH2759-9), 1498-1503. IEEE Dayton Section
Aerospace and Electronic Systems Society, IEEE, New York, May
1989.

Southwell, K., James, K., Clarke, B.A., Andrews, B., Ashworth, C.,
Norris, M., and Patel, V. (Requirements Specification authoring
team). Requirements Definition and Design. The STARTS Guide,
Second Edition, Volume |. National Computing Centre, 177-313,
Chapter 5, 1987.

Stair, Ralph M. Jr., and LaMothe, Richard S. The Use of Systems
Planning Methodologies. Journal of Computer Information Systems
31(2):34-37, Winter, 1990-1991.

Stephens, M., and Whitehead, K. The Analyst—A Workstation for
Analysis and Design. In Procgedings of the Eighth IEEE Internation-
al Conference on Software Engineering. !EEE Computer Society
Press, 1985.

Weinberg, Gerald M. Rethinking Systems Analysis and Design.
New York: Dorset House Publishing, 1988.

Winokur, M., Lavi, J.Z., Lavi, |, and Oz, R. Requirements Analysis
and Specification of Embedded Systems Using ESCAM—A Case
Study. In Proceedings of the 1990 IEEE International Conference
on Computer Systems and Software Engineering (Cat. No.
90CH2867-0), 80-89. IEEE Computer Society Press, May 1990.

Wood, Jane & Silver, Denise. Joint Application Design: How to De-
sign Quality Systems in 40% Less Time. New York: Wiley, 1989.

Yakemovic, K.C. Burgess, and Conklin, E. Jeffrey. Report on a De-
velopment Project Use of an Issue-Based Information System. In
CSCW 90 Proceedings. ACM, October 1990.

Zahniser, Richard A. How to Speed Development with Group Ses-
sions. [EEE Software, 109-110, May 1990.

Zave, P. An Operational Approach to Requirements Specification
for Embedded Systems. IEEE Transactions on Software Engineer-
ing SE-8(3):250-269, May 1982.

CMU/SEI-92-TR-12

67

[Zave 86)

[Zeroual 89]

[Zuccon! 89}

Zave, P., and Schell, W. Salient Features of an Executable Specifi-
cation Language and Its Environment. JEEE Transactions on Soft-
ware Engineering SE-12(2):312-325, February 1986.

Zeroual, K. An Approach for Automating the Specification-Acquisi-
tion Process. In Proceedings of the Second International Workshop
on Software Engineering and Its Applications, 349-355. Toulouse
‘89, EC2, Nanterre, France, 1989.

Zucconi, Lin. Techniques and Experiences Capturing Require-
ments for Several Real-Time Applications. ACM SIGSOFT Soft-
ware Engineering Notes 14(6):51-55, October 1989.

CMU/SEI-92-TR-12

'UNLIMITED, UNCLASSIFIED
SECURITY QLASSIFICATION OF THIS PAGR

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE
N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-92-TR-12

5. MONITORING ORGANIZATION REPORT NUMBER(S)
ESC-TR-92-012

6. NAME OF PERFORMING ORGANIZATION 6b. OF!'TCE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
Software Engineering Institute é‘;‘:""‘“""’ SEI Joint Program Office
6¢c. ADDRESS (city, state, and zip code) To. ADDRESS (city, state, and zip code)
Carnegie Mellon University ESC/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731
8a. NAME OFFUNDINGISPONSORNG 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION f spplicable) F1962890C0003
SEI Joint Program Office ESC/AVS
8c. ADDRESS (city, state, and zip code) 10. SOURCE OF FUNDING NOS.
g:tm:glehl\ﬁ{lc;g évaersnty PROGRAM PROJECT TASK WORK UNIT
S ELEMENT .
ura 13 63756 N/A N/A N/A
11. TITLE (include security classification)
Issues in Requirements Elicitation
12. PERSONAL AUTHOR(S
Michael G. Chnstel Kyo C.Kang
13a. TYPE OF REPORT 13b. TIME COVERED 14, DATE OF REPORT (yesr, month, day) 15. PAGE COUNT
Final FROM 10 September 1992 78

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB.GR.

18. SUBJECT TERMS (continue on reverse of necossary and identify by block number)
requirements engineering, system development, requirements elicitation,

elicitation, specification, validation

19. ABSTRA

(continue on reverse if necessary and idenufy by block number)

There are many problems associated with requirements engineering, including problems in defining
the system scope, problems in fostering understanding among the different communities affected by
the development of a given system, and problems in dealing with the volatile nature of requirements.
These problems may lead to poor requirements and the cancellation of system development, or else
the development of a system that is later judged unsatisfactory or unacceptable, has high mainte-
nance costs, or undergoes frequent changes. By improving requirements elicitation, the require-
ments engineering process can be improved, resulting in enhanced system requirements and

i
;
'

(please tum over)
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNcLAssFEDUNUIMITED)] saMEAsReT[] pmicusers]| Unclassified, Unlimited Distribution
223, NAME OF RESPONSIBLE INDIVIDUAL 22. TELEPHONE NUMBER (include area code) 22¢. OFFICE SYMBOL
Tom Miller, Lt Col, USAF (412) 268-7631 ESC/AVS (SE})

DD FORM 1473,83 APR

EDITION of 1 JAN 73 IS OBSOLETE

UNLIMITED, UNCLASSIFIED

SBECURITY CLASSIFICATION OF THIS

BSTRACT —continued fram page one, block 19

potentially a much better system. Requirements engineering can be decomposed into the activ-
ities of requirements elicitation, specification, and validation. Most of the requirements tech-
niques and tools today focus on specification, i.e., the representation of the requirements. This
report concentrates instead on elicitation concerns, those problems with requirements engineer-
ing that are not adequately addressed by specification techniques. An elicitation methodology is
proposed to handie these concerns. This new elicitation methodology strives to incorporate the
advantages of existing elicitation techniques while comprehensively addressing the activities
performed during requirements elicitation. These activities include fact-finding, requirements
gathering, evaluation and rationalization, prioritization, and integration. Taken by themselves,
existing elicitation techniques are lacking in one or more of these areas.

